bzoj3745: [Coci2015]Norma 分治,单调队列
链接
思路
首先\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=i}^{j}max(a_k)\)可以用单调队列求解。参见?
求解此题目,我们分治。计算\([l,mid]\)对\([mid+1,r]\)的贡献。
我们从后向前枚举\(mid\)到\(l\),定义为\(x\)。(\(A\)为\([x,mid]\)中的最小值,\(B\)为\([x,mid]\)中的最大值)
得到\(p\)(\([mid+1,r]\)中大于等于\(A\)的位置)和\(q\)(\([mid+1,r]\)中小于等于\(B\)的位置)
然后根据p,q的位置四种情况讨论,处理前缀和O1得到贡献。
显然p,q类似于单调队列是\(O(n)\)求得
代码有种简单但是恶心的感觉
复杂度\(O(nlogn)\)
代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+7,inf=0x3f3f3f3f,mod=1e9;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,a[N],ans;
int ma[N],mi[N],sum_mi[N],sum_ma[N],sum_mimai[N],sum_mima[N],sum_mii[N],sum_mai[N];
int jan(int a,int b) {
int ans=(a-b);
if(ans<0) ans+=mod;
return ans;
}
void add(int &x,int y) {
x+=y;
if(x>=mod) x-=mod;
}
void cdq(int l,int r) {
if(l>r) return;
if(l==r) {ans=(1LL*a[l]*a[l]%mod+ans)%mod;return;}
int mid=(l+r)>>1;
cdq(l,mid),cdq(mid+1,r);
sum_mi[mid]=sum_ma[mid]=sum_mima[mid]=sum_mimai[mid]=sum_mii[mid]=sum_mai[mid]=0;
mi[mid]=inf,ma[mid]=0;
for(int i=mid+1;i<=r;++i) {
mi[i]=min(mi[i-1],a[i]);
ma[i]=max(ma[i-1],a[i]);
sum_mi[i]=(sum_mi[i-1]+mi[i])%mod;
sum_ma[i]=(sum_ma[i-1]+ma[i])%mod;
sum_mii[i]=(sum_mii[i-1]+1LL*mi[i]*i%mod)%mod;
sum_mai[i]=(sum_mai[i-1]+1LL*ma[i]*i%mod)%mod;
sum_mima[i]=(sum_mima[i-1]+1LL*mi[i]*ma[i]%mod)%mod;
sum_mimai[i]=(sum_mimai[i-1]+1LL*mi[i]*ma[i]%mod*i%mod)%mod;
}
long long L,R;
int p=mid,q=mid,A=a[mid],B=a[mid];
int tot=ans;
for(int i=mid;i>=l;--i) {
A=min(A,a[i]),B=max(B,a[i]);
while(p<r&&A<=a[p+1]) p++;
while(q<r&&B>=a[q+1]) q++;
L=mid+1,R=min(p,q);
if(L<=R)
add(ans,1LL*A*B%mod*((L+R+2-2LL*i)*(R-L+1)/2%mod)%mod);
L=p+1,R=q;
if(L<=R)
add(ans,1LL*B*jan(sum_mii[R],sum_mii[L-1])%mod),
add(ans,1LL*jan(1,i)*B%mod*jan(sum_mi[R],sum_mi[L-1])%mod);
L=q+1,R=p;
if(L<=R)
add(ans,1LL*A*jan(sum_mai[R],sum_mai[L-1])%mod),
add(ans,1LL*jan(1,i)*A%mod*jan(sum_ma[R],sum_ma[L-1])%mod);
L=max(p+1,q+1),R=r;
if(L<=R)
add(ans,jan(sum_mimai[R],sum_mimai[L-1])),
add(ans,1LL*jan(1,i)*jan(sum_mima[R],sum_mima[L-1])%mod);
}
}
int main() {
n=read();
for(int i=1;i<=n;++i) a[i]=read();
cdq(1,n);
printf("%d",ans);
return 0;
}
bzoj3745: [Coci2015]Norma 分治,单调队列的更多相关文章
- [BZOJ3745][COCI2015]Norma[分治]
题意 题目链接 分析 考虑分治,记当前分治区间为 \(l,r\) . 枚举左端点,然后发现右端点无非三种情况: 极大极小值都在左边; 有一个在左边; 极大极小值都在右边; 考虑递推 \(l\) 的同时 ...
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
- 【BZOJ 1758】【WC 2010】重建计划 分数规划+点分治+单调队列
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的 ...
- [BZOJ1758][WC2010]重建计划(点分治+单调队列)
点分治,对于每个分治中心,考虑求出经过它的符合长度条件的链的最大权值和. 从分治中心dfs下去取出所有链,为了防止两条链属于同一个子树,我们一个子树一个子树地处理. 用s1[i]记录目前分治中心伸下去 ...
- BZOJ4860 Beijing2017树的难题(点分治+单调队列)
考虑点分治.对子树按照根部颜色排序,每次处理一种颜色的子树,对同色和不同色两种情况分别做一遍即可,单调队列优化.但是注意到这里每次使用单调队列的复杂度是O(之前的子树最大深度+该子树深度),一不小心就 ...
- bzoj4182 Shopping 点分治+单调队列优化多重背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树 ...
- P4292 [WC2010]重建计划 点分治+单调队列
题目描述 题目传送门 分析 看到比值的形式就想到 \(01分数规划\),二分答案 设当前的值为 \(mids\) 如果存在\(\frac{\sum _{e \in S} v(e)}{|S|} \geq ...
- BZOJ1758: [Wc2010]重建计划(01分数规划+点分治+单调队列)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, ...
- bzoj 1758 [Wc2010]重建计划 分数规划+树分治单调队列check
[Wc2010]重建计划 Time Limit: 40 Sec Memory Limit: 162 MBSubmit: 4345 Solved: 1054[Submit][Status][Disc ...
随机推荐
- Marshmallow详解
目录 Marshmallow详解 1. Scheme 2. Serializing(序列化) 3. 过滤输出 4. Deserializing(反序列化) 5. 处理多个对象的集合 6. Valida ...
- 彻底搞懂etcd raft选举、数据同步
etcd raft选举机制 etcd 是一个分布式的k/V存储系统.核心使用了RAFT分布式一致性协议.一致性这个概念,它是指多个服务器在状态达成一致,但是在一个分布式系统中,因为各种意外可能,有的服 ...
- JavaScript 数组(二)数组练习
1.求一组数中的最大值和最小值,以及所在位置(最大值和最小值在这组数中的位置) var numbers = [120, 13, 101, 88, 10, 25]; var max = numbers[ ...
- 【Python】进程、线程、协程对比
请仔细理解如下的通俗描述 有一个老板想要开个工厂进行生产某件商品(例如剪子) 他需要画一些财力物力制作一条生产线,这个生产线上有很多的器件以及材料这些所有的为了能够生产剪子而准备的资源称之为:进程 只 ...
- redis中获取不同自增数的方法
项目需求,需要获取不同的自增数,然后与其他信息拼接成一个字符串作为编号,这边有一种基于数据库的获取自增数的方法,这边略过,还有一种基于redis的实现. 此方法可以用到redis的自增函数 publi ...
- MySQL MHA--主库故障检测
MHA主库检查参数 MHA从0.53版本开始支持ping_type参数来设置如何检查master可用性:ping_type=select: 基于一个到master的已经存在的连接执行select 1, ...
- Jquery学习笔记,全面实用,需要的可以留下邮箱,给大家发原稿文档
JQuery 第一章:Jquery概念介绍 1.1 Jquery介绍 (1)并不是一门新语言.将常用的.复杂的操作进行函数化封装,直接调用,大大降低了使用JavaScript的难度,改变了使用Java ...
- 【GitHub】源代码管理工具初识
软件工程综合实践第四次个人作业 作业要求:通过搜索资料和自学,了解源代码管理工具——GitHub 前言: GitHub,读音 /git·hʌb/ ,让社会化编程成为现实,其于2018年6月4日被微软收 ...
- 【功能点】php导出excel
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_33862644/article/d ...
- CentOS操作系统内核升级
一.升级内核(带aufs模块,记住一定要升级,要不然会出现很多莫名奇怪的问题,建议用yum安装) 1.yum安装带aufs模块的3.10内核(或到这里下载kernel手动安装:http://down. ...