Matrix Power Series

Time Limit: 3000MS Memory Limit: 131072K

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4

0 1

1 1

Sample Output

1 2

2 3

Source

POJ Monthly–2007.06.03, Huang, Jinsong

给定矩阵A,求A + A^2 + A^3 + … + A^k的结果

/*
矩阵乘法经典题.
一开始并没有想出来orz.
发现正解好神奇.
这种题就应该先推出递推式子再构造矩阵.
本来还想矩阵套矩阵来着
弱啊.
学习了一下单位矩阵的用法.
题解:http://www.cnblogs.com/justPassBy/p/4448630.html
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 61
#define LL long long
using namespace std;
LL n,m,k,ans[MAXN][MAXN],b[MAXN][MAXN],c[MAXN][MAXN];
LL mul(LL x,LL y)
{
LL tot=0;
while(y)
{
if(y&1) tot=(tot+x)%m;
x=(x+x)%m;
y>>=1;
}
return tot;
}
void mi()
{
while(k)
{
if(k&1)
{
for(int i=1;i<=n*2;i++)
for(int j=1;j<=n*2;j++)
for(int k=1;k<=n*2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=n*2;i++)
for(int j=1;j<=n*2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=n*2;i++)
for(int j=1;j<=n*2;j++)
for(int k=1;k<=n*2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=n*2;i++)
for(int j=1;j<=n*2;j++)
b[i][j]=c[i][j],c[i][j]=0;
k>>=1;
}
}
void slove()
{
k--;
mi();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
cout<<ans[i][j]<<" ";
printf("\n");
}
}
void Clear()
{
memset(b,0,sizeof b);
memset(ans,0,sizeof ans);
}
int main()
{
while(~scanf("%lld%lld%lld",&n,&k,&m))
{
Clear();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>b[i][j];b[i][j]%=m;
ans[i][j]=ans[i][n+j]=b[i][j];
}
b[n+i][i]=b[n+i][n+i]=1;
}
slove();
}
return 0;
}

Poj 3233 Matrix Power Series(矩阵乘法)的更多相关文章

  1. poj 3233 Matrix Power Series(矩阵二分,高速幂)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15739   Accepted:  ...

  2. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  3. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  4. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  6. POJ 3233 Matrix Power Series(矩阵等比求和)

    题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...

  7. 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series

    poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  8. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  9. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

随机推荐

  1. eclipse 无法启动,JAVA_HOME 失效

    主要是因为JDK和eclipse 版本不兼容导致的,4位jdk配64位eclipse,32位jdk配32位eclipse; Java 设置JAVA_HOME无效 其根本原因是%JAVA_HOME%在p ...

  2. java之hibernate之单向的多对多关联映射

    这篇 单向的多对多关联映射 1.如何在权限管理中,角色和权限之间的关系就是多对多的关系,表结构为: 2.类结构 Permission.java public class Permission impl ...

  3. C# HtmlAgilityPack爬取静态页面

    最近对爬虫很感兴趣,稍微研究了一下,利用HtmlAgilityPack制作了一个十分简单的爬虫,这个简易爬虫只能获取静态页面的Html HtmlAgilityPack简介 HtmlAgilityPac ...

  4. MVC4 部署 could not load file or assembly system.web.http.webhost 或是其它文件出误

    自从VS2010发布之后使用它来做开发的程序员越来越多,其中很多人使用了MVC来作为新的开发框架,但是在系统部署的时候我们也遇到诸多问题,因为目前大多数windows服务器采用的还是Windows S ...

  5. Js保存图片到本地

    注:此方法是使用hbuilderx云打包之后才能用,否则在浏览器中会报 plus is not defined 官方文档 http://www.html5plus.org/doc/zh_cn/gall ...

  6. Java 之 Servlet 基础入门

    Servlet 一.什么是 Servlet 1.概念 Servlet:server applet,是指运行在服务器端的小程序 2.Servlet   servlet 就是一个接口,定义了 Java 类 ...

  7. 各种变异绕过XSS过滤器

    各种变异绕过XSS过滤器(Various variations bypass the XSS filter ) 文章来自:https://www.cnblogs.com/iAmSoScArEd/p/1 ...

  8. 轻量ORM-SqlRepoEx介绍

    轻量级 ORM-SqlRepoEx 介绍 SqlRepoEx是 .Net平台下兼容.NET Standard 2.0人一个轻型的ORM.解决了Lambda转Sql语句这一难题,SqlRepoEx使用的 ...

  9. Ldr和bl指令

    Ldr和bl在启动程序中,都是可以负责pc跳转的指令. 1)bl是地址无关指令,和什么地址无关呢?和当前的运行地址无关,链接器脚本中标明了一个运行地址,但是arm中的代码实际是从地址0开始运行的.这个 ...

  10. MySQL Error--存储inode用完后报设备没有空间

    问题描述:磁盘有足够剩余空间,但在创建文件或文件夹时报错,提示“设备没有空间”. 问题原因:当存储设备通过分区格式化为文件系统后,会分为两部分:1.block部分: 存储的最小单位为扇区(Sector ...