一、mnist的属性和方法

为了方便我只检查了后20个属性和方法

 from tensorflow.examples.tutorials.mnist import input_data

 mnist = input_data.read_data_sets('G:\MNIST DATABASE\MNIST_data',one_hot=True)
print(dir(mnist)[-20:])

1:从tensorflow.examples.tutorials.mnist库中导入input_data文件

3:调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;

4:打印mnist后20个属性和方法

结果:

Extracting G:\MNIST DATABASE\MNIST_data\train-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting G:\MNIST DATABASE\MNIST_data\t10k-images-idx3-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
Extracting G:\MNIST DATABASE\MNIST_data\t10k-labels-idx1-ubyte.gz
['__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__slots__', '__str__', '__subclasshook__', '_asdict', '_fields', '_make', '_replace', '_source', 'count', 'index', 'test', 'train', 'validation']

二、查看mnist里的训练集、验证集、测试集包括多少图片

train集合有55000张图片,validation集合有5000张图片,这两个集合组成MNIST本身提供的训练数据集

 print('训练数据数量',mnist.train.num_examples)
print('验证数据数量',mnist.validation.num_examples)
print('测试数据数量',mnist.test.num_examples) #结果:
训练数据数量 55000
验证数据数量 5000
测试数据数量 10000

三、mnist.train.next_batch()函数

input_data.read_data_sets函数生成的类提供的mnist.train.next_batch()函数,它可以从所有的训练数据中读取一小部分作为一个训练batch

 batch_size = 100
#从train集合中选取100个训练数据,100个训练数据的标签
xs,ys = mnist.train.next_batch(batch_size)
print('xs shape',xs.shape)
print('ys shape',ys.shape) #结果:
xs shape (100, 784)
ys shape (100, 10)

四、mnist.train.images观察

mnist.train.images的数据类型是数组,每一个数据是一位数组,每个数据一维数组的长度是784,即每张图片的像素数
 print('train集合数据的类型:',type(mnist.train.images),'train集合数据矩阵形状:',mnist.train.images.shape)
print('train集合数据标签的类型:',type(mnist.train.labels),'train集合数据标签矩阵形状:',mnist.train.labels.shape) #结果:
train集合数据的类型: <class 'numpy.ndarray'> train集合数据矩阵形状: (55000, 784)
train集合数据标签的类型: <class 'numpy.ndarray'> train集合数据标签矩阵形状: (55000, 10) print('train集合第一个数据长度、内容:',len(mnist.train.images[0]),mnist.train.images[0])
print('train集合第一个数据标签长度、内容:',len(mnist.train.labels[0]),mnist.train.labels[0]) 结果:
train集合第一个数据长度、内容: 784 [ 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.38039219 0.37647063
0.3019608 0.46274513 0.2392157 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.35294119 0.5411765
0.92156869 0.92156869 0.92156869 0.92156869 0.92156869 0.92156869
0.98431379 0.98431379 0.97254908 0.99607849 0.96078438 0.92156869
0.74509805 0.08235294 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.54901963 0.98431379 0.99607849 0.99607849 0.99607849 0.99607849
0.99607849 0.99607849 0.99607849 0.99607849 0.99607849 0.99607849
0.99607849 0.99607849 0.99607849 0.99607849 0.74117649 0.09019608
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.88627458 0.99607849 0.81568635
0.78039223 0.78039223 0.78039223 0.78039223 0.54509807 0.2392157
0.2392157 0.2392157 0.2392157 0.2392157 0.50196081 0.8705883
0.99607849 0.99607849 0.74117649 0.08235294 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.14901961 0.32156864 0.0509804 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0.13333334 0.83529419 0.99607849 0.99607849 0.45098042 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0.32941177 0.99607849 0.99607849 0.91764712 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0.32941177 0.99607849 0.99607849 0.91764712 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0.41568631 0.6156863 0.99607849 0.99607849 0.95294124 0.20000002
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.09803922 0.45882356 0.89411771
0.89411771 0.89411771 0.99215692 0.99607849 0.99607849 0.99607849
0.99607849 0.94117653 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.26666668 0.4666667 0.86274517
0.99607849 0.99607849 0.99607849 0.99607849 0.99607849 0.99607849
0.99607849 0.99607849 0.99607849 0.55686277 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.14509805 0.73333335 0.99215692
0.99607849 0.99607849 0.99607849 0.87450987 0.80784321 0.80784321
0.29411766 0.26666668 0.84313732 0.99607849 0.99607849 0.45882356
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.44313729
0.8588236 0.99607849 0.94901967 0.89019614 0.45098042 0.34901962
0.12156864 0. 0. 0. 0. 0.7843138
0.99607849 0.9450981 0.16078432 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0.66274512 0.99607849 0.6901961 0.24313727 0. 0.
0. 0. 0. 0. 0. 0.18823531
0.90588242 0.99607849 0.91764712 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0.07058824 0.48627454 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.32941177 0.99607849 0.99607849 0.65098041 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0.54509807 0.99607849 0.9333334 0.22352943 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.82352948 0.98039222 0.99607849 0.65882355 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0.94901967 0.99607849 0.93725497 0.22352943 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.34901962 0.98431379 0.9450981 0.33725491 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0.01960784 0.80784321 0.96470594 0.6156863 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0.01568628 0.45882356 0.27058825 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. ]
train集合第一个数据标签长度、内容: 10 [ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

从上面的运行结果可以看出,在变量mnist.train中总共有55000个样本,每个样本有784个特征。
原图片形状为28*28,28*28=784,每个图片样本展平后则有784维特征。
选取1个样本,用3种作图方式查看其图片内容,代码如下:

 #将数组张换成图片形式
image = mnist.train.images[1].reshape(-1,28)
fig = plt.figure("图片展示")
ax0 =fig.add_subplot(131)
ax0.imshow(image)
ax0.axis('off') #不显示坐标尺寸 plt.subplot(132)
plt.imshow(image,cmap='gray')
plt.axis('off')#不显示坐标尺寸 plt.subplot(133)
plt.imshow(image,cmap='gray_r')
plt.axis('off')
plt.show()

结果:

从上面的运行结果可以看出,调用plt.show方法时,参数cmap指定值为graygray_r符合正常的观看效果。

五、查看手写数字图

从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下

 from tensorflow.examples.tutorials.mnist import input_data
import math
import matplotlib.pyplot as plt
import numpy as np
mnist = input_data.read_data_sets('G:\MNIST DATABASE\MNIST_data',one_hot=True)
#画单张mnist数据集的数据
def drawdigit(position,image,title):
plt.subplot(*position)
plt.imshow(image,cmap='gray_r')
plt.axis('off')
plt.title(title) #取一个batch的数据,然后在一张画布上画batch_size个子图
def batchDraw(batch_size):
images,labels = mnist.train.next_batch(batch_size)
row_num = math.ceil(batch_size ** 0.5)
column_num = row_num
plt.figure(figsize=(row_num,column_num))
for i in range(row_num):
for j in range(column_num):
index = i * column_num + j
if index < batch_size:
position = (row_num,column_num,index+1)
image = images[index].reshape(-1,28)
title = 'actual:%d'%(np.argmax(labels[index]))
drawdigit(position,image,title) if __name__ == '__main__':
batchDraw(196)
plt.show()

结果:

mnist数据集探究的更多相关文章

  1. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  2. mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同

    有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/ ...

  3. Caffe初试(二)windows下的cafee训练和测试mnist数据集

    一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...

  4. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

  5. 使用libsvm对MNIST数据集进行实验

    使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...

  6. mnist数据集转换bmp图片

    Mat格式mnist数据集下载地址:http://www.cs.nyu.edu/~roweis/data.html Matlab转换代码: load('mnist_all.mat'); type = ...

  7. caffe在windows编译project及执行mnist数据集測试

    caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://bl ...

  8. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  9. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

随机推荐

  1. 微信小程序小Demo

    微信小程序小Demo 调用API,轮播图,排行榜,底部BabTar的使用... board // board/board.js Page({ /** * 页面的初始数据 */ // 可以是网络路径图片 ...

  2. 永久清理git中的历史大文件

    原文发布于:https://www.chenxublog.com/2019/05/26/remove-git-big-files.html 有写老的git仓库,因为当年的无知,不会用.gitignor ...

  3. Asp.Net中Global报错,关键字也不变色问题

    原因是我把Global名字改了,使用默认名字就好了

  4. C# 关于使用JavaScriptSerializer 序列化与返序列化的操作

    //开始解析  //引用 //using System.Web.Script.Serialization; JavaScriptSerializer js = new JavaScriptSerial ...

  5. Java生鲜电商平台-商品无限极目录的设计与架构

    Java生鲜电商平台-商品无限极目录的设计与架构 说明:任何一个商品都应该是先属于某一个目录,然后在目录中添加商品,目录理论上最多支持三级,因为级别太多,不容易管理.但是设计中需要设计无限制的级别. ...

  6. Java实现QQ邮件发送

    首先我们需要两个jar包,点击下面即可下载这两个包: JavaMail mail.jar 1.4.5 JAF(版本 1.1.1) activation.jar 我们这里采用QQ邮箱发送邮件为例,代码如 ...

  7. flux架构的详细介绍和使用!

    结构分为四个 视图 view动作 action派发器 dispatcher数据商店 store 流程: 用户操作视图 视图(view)发送动作(action)到派发器(dispatcher) 由派发器 ...

  8. 【Git版本控制】Idea中设置Git忽略对某些文件的版本追踪

    在Idea中有些本地文件无需与远程库同步,仅是本地使用.此时就需要将这些文件加入到Git的版本忽略中来. 设置步骤 1.搜索插件 .ignore,并安装 2.增加.gitignore文件 3.配置相应 ...

  9. windows 下 创建项目的虚拟环境

    一. 为何使用虚拟环境 虚拟环境是Python解释器的一个私有副本,在这个环境你可以安装私有包,而且不会影响系统中安装的全局Python解释器. 在这个虚拟环境中的所有安装包,都是针对此环境的,不会被 ...

  10. Lambda 表达式应用 权限管理_用户的角色修改

    Lambda 表达式应用 权限管理_用户的角色修改 需求 前台发送用户新的角色列表,后台查询出用户原有的角色列表. 1.获取出需增加的角色列表 => 在新角色列表中,但是不在原角色列表中的角色 ...