题意

​ 求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望。

思路

​ 用生成函数做是个好题。

​ 我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 \(f_n\) 。首先,\(n\) 个节点的无标号有根二叉树种类数为 \(C_n\) ,其中 \(C_n\) 表示卡特兰数。那么递推式比较显然
\[
\begin{align*}
f_n&=\sum_{i=0}^{n-1}f_{i}C_{n-1-i}+f_{n-1-i}C_i\\
&=2\sum_{i=0}^{n-1} f_iC_{n-1-i}
\end{align*}
\]
​ 特别的 \(f_0=0, f_1=1\) (求递推一定要考虑特殊情况,往往前面几项不满足递推)。

​ 我们设数列 \(\{f_n\}\) 的生成函数为 \(F(x)\) , 数列 \(\{C_n\}\) 的生成函数为 \(G(x)\) 。

​ 观察递推式,我们由卡特兰数递推的生成函数推导得到启发,可以将 \(F(x)\) 乘上 \(G(x)\) 。
\[
\begin{align*}
F(x)G(x)&=f_0C_0x^0+(f_0C_1+f_1C_0)x^1+(f_0C_2+f_1C_1+f_2C_0)x^2+\cdots\\
&=f_0C_0x^0+{f_2\over 2}x^1+{f_3\over 2}x^2+{f_4\over 2}x^3+\cdots\\
&={f_2x^1+f_3x^2+f_4x^3+\cdots\over2}\\
&={F(x)-(f_0x^0-f_1x^1)\over 2x}\\
&={F(x)-x\over 2x}\\
\end{align*}
\]
​ 解得
\[
F(x)={1\over 1-2xG(x)}
\]
​ 而卡特兰数的生成函数 \(G(x)\) 等于 \(\displaystyle{1-(1-4x)^{1\over 2}\over 2x}\)

​ 代入得到
\[
\begin{align*}
F(x)&={x\over {\sqrt{1-4x}}}\\
&=x(1-4x)^{-{1\over 2}}
\end{align*}
\]
​ 进行广义二项式展开
\[
\begin{align*}
F(x)&=x\sum_{i=0}^{+\infty}{-{1\over 2}\choose i}(-4x)^i\\
&=x\sum_{i=0}^{+\infty}{(-{1\over 2})\times(-{3\over 2})\times\cdots\times(-{2i-1\over 2})\over i!}(-4x)^i\\
&=x\sum_{i=0}^{+\infty}{2^i\times1\times3\times\cdots\times(2i-1)\over i!}x^i\\
&=x\sum_{i=0}^{+\infty}{2^i\times{2i!\over 2^ii!}\over i!}x^i\\
&=x\sum_{i=0}^{+\infty}{2i!\over i! i!}x^i\\
&=\sum_{i=0}^{+\infty}{2i\choose i}x^{i+1}\\
&=\sum_{i=1}^{+\infty}{2i-2\choose i-1}x^i\\
\end{align*}
\]

​ 于是我们得到了
\[
f_n=\begin{cases}
\displaystyle{2n-2\choose n-1}&n>0\\
0&n=0
\end{cases}
\]
​ 题目要求的,其实就是 \(\displaystyle{f_n\over C_n}\) ,即当 \(n=0\) 时,答案为 \(0\) ;否则答案为 \(\displaystyle{2n-2\choose n-1}\over \displaystyle{{1\over n+1}{2n\choose n}}\) 。

​ 简化一下,变成了 \(\displaystyle {n(n+1)\over 4n-2}\) ,这就是最终的答案。

代码

​ 输入 \(n\) ,输出 \(\displaystyle {n(n+1)\over 4n-2}\) 就行了,要什么代码??

TJOI 2015 概率论(生成函数)的更多相关文章

  1. 【bzoj4001】[TJOI2015]概率论 生成函数+导数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...

  2. BZOJ 3998 [TJOI 2015] 弦论 解题报告

    这是一道后缀自动机经典题目. 对于 $t=0$ 的情况:每个节点都代表一个子串,所以我们给每个节点的 $Size$ 都记为 $1$, 对于 $t=1$ 的情况:我们只给 $last$ 节点的 $Siz ...

  3. BZOJ 3997 [TJOI 2015 组合数学] 解题报告

    这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2 ...

  4. BZOJ 3996 [TJOI 2015] 线性代数 解题报告

    首先,我们可以得到: $$D = \sum_{i=1}^{n}\sum_{j=1}^{n}a_i\times a_j\times b_{i,j} - \sum_{i=1}^{n}a_i\times c ...

  5. 解题:TJOI 2015 弦论

    题面 好像是个经典问题,然而我没做过 建SAM,然后经过每个节点的子串数目就可以求了,多个相同子串算一个的话就把所有siz都搞成$1$,否则就是$right$集合的大小,然后就是常见的递推 求第$k$ ...

  6. 解题:TJOI 2015 组合数学

    题面 通过这个题理解了一下反链的概念,更新在图论知识点里了 每个点向右和下连边可以建出一张图,这个题事实上是让我们求图的最小链覆盖.Dilworth定理告诉我们,最小链覆盖等于最长反链(反链:DAG中 ...

  7. 后缀自动机(SAM)奶妈式教程

    后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...

  8. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  9. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

随机推荐

  1. Oracle 11g 服务端的安装步骤

    Ø  简介 本文主要介绍 Oracle 11g 服务端的安装步骤,在介绍之前说明以下几点: 1.   所安装的服务器是本机的虚拟机,操作系统为 Windows Server 2019: 2.   以下 ...

  2. 原创的离线版 Redis 教程,给力!

    嗯,你没看错,松哥又给大家送干货来了.这次是可以离线阅读的 PDF 版教程哦. 之前一直有小伙伴问我有没有 Redis 的电子书,老实说,有是有,但是公开给大家分享,其实有一点点风险,毕竟这都是有版权 ...

  3. 【MySQL】条件查询之排序聚合分组分页查询

    排序查询 语法:order by 子句 order by 排序字段1 排序方式1 , 排序字段2 排序方式2... 排序方式: ASC:升序,默认的. DESC:降序. 注意: 如果有多个排序条件,则 ...

  4. VS工具箱不显示DEV控件解决方法

    VS工具箱中不显示DEV控件解决方法 之前先装vs,再装dev控件,vs工具栏中自动会加载并显示dev相关组件,但是,在更新vs(我用2017版)后,原先安装好的dev控件库不显示在vs的工具栏中了. ...

  5. asp.net 创建虚拟目录 iis创建虚拟目录

    这几天本人接了个档案管理查询系统的小项目,踩过的坑. 其实功能都挺简单的,大致要求客户有很多pdf文档,为了方便管理,所有要开发一个相当于文件管理系统,本人正好有现成的文件管理系统,修改下就可以.其中 ...

  6. netcore sdk版本选择

    NetCore sdk并不是每个版本都支持VS2017工具,也不是每个版本的sdk版本号和Runtime版本号都一样,这就需要我们在创建某个版本的net core应用时注意: 使用不同版本的vs时需要 ...

  7. PHP 日历函数手册

    PHP日历函数安装>>> 函数名称 描述 cal_days_in_month 返回某个历法中某年中某月的天数 cal_from_jd 转换Julian Day计数到一个支持的历法. ...

  8. css position 5种不同的值的用法

    position属性 position属性指定用于元素的定位方法的类型(静态,相对,固定,绝对或粘性). 有五种不同的值: static relative fixed absolute sticky ...

  9. CentOS 7下简答搭建DNS服务器

    一.DNS相关介绍 DNS(Domain Name System)域名系统协议,作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用挨个记住IP地址.通过主机名,最终得到 ...

  10. Linux中断管理 (1)Linux中断管理机制【转】

    转自:https://www.cnblogs.com/arnoldlu/p/8659981.html 目录: <Linux中断管理> <Linux中断管理 (1)Linux中断管理机 ...