使用协方差矩阵的特征向量PCA来处理数据降维
取2维特征,方便图形展示
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X) red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1])
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()
使用协方差矩阵的特征向量PCA来处理数据降维的更多相关文章
- 【机器学习实战】第13章 利用 PCA 来简化数据
第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实 ...
- 数据降维(Dimensionality reduction)
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转 ...
- PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
- 数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习——利用PCA来简化数据
降维技术的好处: 1.使得数据集更易使用 2.降低很多算法的计算开销 3.取出噪声 4.使得结果易懂 在已标注和未标注的数据上都有降维技术,降维的方法: 1.主成分分析(Principal Compo ...
- [机器学习]-PCA数据降维:从代码到原理的深入解析
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...
- 利用主成分分析(PCA)简化数据
一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度 ...
随机推荐
- 执行chmod -R 777 / 补救
执行后千万不要退出当前窗口!!! 在自己的虚拟机上设置某个站的权限的时候,原来应该是chmod -R 777 ./* 结果少按了个点,执行了chmod -R 777 /* 因为执行时间超出自己的预 ...
- Linux的rwx
- 基于Asp.net core + EF + Sqlite 5分钟快速上手一个小项目
虽然该方法不会用在实际开发中,但该过程对于初学者还是非常友好的,真应了麻雀虽小,五脏俱全这句话了.好了不多废话了,直接开始!! 1.建立一个名为test的Asp.net core web应用程序 这一 ...
- postgres高可用学习篇一:如何通过patroni如何管理3个postgres节点
环境: CentOS Linux release 7.6.1810 (Core) 内核版本:3.10.0-957.10.1.el7.x86_64 node1:192.168.216.130 node2 ...
- Dynamics 365 On-premises和Online 的不同
1.新建账号的不同:on-premises(下文简称op)是和ad绑定的,所以必须先在ad中新建账号后才能在CRM中新建.而online是和Office365(下文简称O365)绑定的,所以需在O36 ...
- vue之组件通信
vue组件通信一般分为以下几种情况: 1.父子组件通信: 2.兄弟组件通信: 3.跨多层级组件通信: 一.父子通信 父组件通过props传递数据给子组件,子组件通过emit发送事件传递数 ...
- 域渗透:SPN(ServicePrincipal Names)的利用
SPN 简介:服务主体名称(SPN:ServicePrincipal Names)是服务实例(可以理解为一个服务,比如 HTTP.MSSQL)的唯一标识符.Kerberos 身份验证使用 SPN 将服 ...
- KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题
KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...
- 洛谷P1265 公路修建题解
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...
- (7)Go切片
切片 切片(Slice)是一个拥有相同类型元素的可变长度的序列.它是基于数组类型做的一层封装.它非常灵活,支持自动扩容. 切片是一个引用类型,它的内部结构包含地址.长度和容量.切片一般用于快速地操作一 ...