取2维特征,方便图形展示

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris data = load_iris()
y = data.target
X = data.data
pca = PCA(n_components=2)
reduced_X = pca.fit_transform(X) red_x, red_y = [], []
blue_x, blue_y = [], []
green_x, green_y = [], []
for i in range(len(reduced_X)):
if y[i] == 0:
red_x.append(reduced_X[i][0])
red_y.append(reduced_X[i][1])
elif y[i] == 1:
blue_x.append(reduced_X[i][0])
blue_y.append(reduced_X[i][1])
else:
green_x.append(reduced_X[i][0])
green_y.append(reduced_X[i][1])
plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(blue_x, blue_y, c='b', marker='D')
plt.scatter(green_x, green_y, c='g', marker='.')
plt.show()

使用协方差矩阵的特征向量PCA来处理数据降维的更多相关文章

  1. 【机器学习实战】第13章 利用 PCA 来简化数据

    第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实 ...

  2. 数据降维(Dimensionality reduction)

    数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转 ...

  3. PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?

    PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...

  4. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  5. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  6. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  7. 机器学习——利用PCA来简化数据

    降维技术的好处: 1.使得数据集更易使用 2.降低很多算法的计算开销 3.取出噪声 4.使得结果易懂 在已标注和未标注的数据上都有降维技术,降维的方法: 1.主成分分析(Principal Compo ...

  8. [机器学习]-PCA数据降维:从代码到原理的深入解析

    &*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Prin ...

  9. 利用主成分分析(PCA)简化数据

    一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度 ...

随机推荐

  1. 执行chmod -R 777 / 补救

    执行后千万不要退出当前窗口!!! 在自己的虚拟机上设置某个站的权限的时候,原来应该是chmod -R 777 ./*  结果少按了个点,执行了chmod -R 777 /*  因为执行时间超出自己的预 ...

  2. Linux的rwx

  3. 基于Asp.net core + EF + Sqlite 5分钟快速上手一个小项目

    虽然该方法不会用在实际开发中,但该过程对于初学者还是非常友好的,真应了麻雀虽小,五脏俱全这句话了.好了不多废话了,直接开始!! 1.建立一个名为test的Asp.net core web应用程序 这一 ...

  4. postgres高可用学习篇一:如何通过patroni如何管理3个postgres节点

    环境: CentOS Linux release 7.6.1810 (Core) 内核版本:3.10.0-957.10.1.el7.x86_64 node1:192.168.216.130 node2 ...

  5. Dynamics 365 On-premises和Online 的不同

    1.新建账号的不同:on-premises(下文简称op)是和ad绑定的,所以必须先在ad中新建账号后才能在CRM中新建.而online是和Office365(下文简称O365)绑定的,所以需在O36 ...

  6. vue之组件通信

    vue组件通信一般分为以下几种情况: 1.父子组件通信: 2.兄弟组件通信: 3.跨多层级组件通信: 一.父子通信        父组件通过props传递数据给子组件,子组件通过emit发送事件传递数 ...

  7. 域渗透:SPN(ServicePrincipal Names)的利用

    SPN 简介:服务主体名称(SPN:ServicePrincipal Names)是服务实例(可以理解为一个服务,比如 HTTP.MSSQL)的唯一标识符.Kerberos 身份验证使用 SPN 将服 ...

  8. KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题

    KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...

  9. 洛谷P1265 公路修建题解

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  10. (7)Go切片

    切片 切片(Slice)是一个拥有相同类型元素的可变长度的序列.它是基于数组类型做的一层封装.它非常灵活,支持自动扩容. 切片是一个引用类型,它的内部结构包含地址.长度和容量.切片一般用于快速地操作一 ...