33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return its index, otherwise return -. You may assume no duplicate exists in the array. Your algorithm's runtime complexity must be in the order of O(log n). Example : Input: nums = [,,,,,,], target =
Output:
Example : Input: nums = [,,,,,,], target =
Output: -
断点函数单调性,无非单增,或者只有两段,且各自区间范围内单增

C
4 ms
int search(int* nums, int numsSize, int target) {
if(numsSize == ) return -;
int left = , right = numsSize -;
int pivot = ; // turning point
int mid = ;
// search for turning point.
while (left < right)
{
mid = left + (right - left) / ;
if(nums[mid] > nums[right])
{
left = mid + ;
}else{
right = mid;
}
}
pivot = left;
// search for target.
left = , right = numsSize-;
while (left <= right)
{
//printf("mid:%d, left:%d, right:%d\n", mid, left, right);
mid = left + (right - left) / ;
int realmid = (mid + pivot)%numsSize;
if(nums[realmid] == target)
{
return realmid;
}else if (nums[realmid] < target) {
left = mid + ;
}else {
right = mid - ;
}
}
return -;
}
C++ 0ms
static int x=[](){
// toggle off cout & cin, instead, use printf & scanf
std::ios::sync_with_stdio(false);
// untie cin & cout
cin.tie(NULL);
return ;
}();
class Solution {
public:
int search(vector<int>& nums, int target) {
if(nums.empty()) return -;
function<int()> _find = [&nums]() -> int {
if(nums.empty()) return ;
int low = , high = nums.size() -;
while(low <= high) {
int mid = (high-low)/ + low;
if(nums[mid] > nums[high]) low = mid+;
else if(nums[mid] < nums[high]) high = mid;
else return mid;
}
// return low;
};
function <int(int,int)> binary_search = [&nums](int target, int index) -> int {
if(nums.empty()) return -;
int low =index, high = nums.size() - + index;
while (low <= high) {
int mid = (high-low)/ + low;
int value = nums[mid%nums.size()];
if(target < value) high = mid -;
else if(target > value) low = mid + ;
else
return mid%nums.size();
}
return -;
};
int mid = _find();
return binary_search(target, mid);
}
};
c++ 4ms
/*
Explanation Let's say nums looks like this: [12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Because it's not fully sorted, we can't do normal binary search. But here comes the trick: If target is let's say 14, then we adjust nums to this, where "inf" means infinity:
[12, 13, 14, 15, 16, 17, 18, 19, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf] If target is let's say 7, then we adjust nums to this:
[-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] And then we can simply do ordinary binary search. Of course we don't actually adjust the whole array but instead adjust only on the fly only the elements we look at. And the adjustment is done by comparing both the target and the actual element against nums[0]. by StefanPochmann
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14443/C++-4-lines-4ms by rantos22
*/
class Solution {
public:
int search(vector<int> &nums, int target)
{
auto skip_left = [&]( int x) { return x >= nums[] ? numeric_limits<int>::min() : x; };
auto skip_right = [&] (int x) { return x < nums[] ? numeric_limits<int>::max() : x; };
auto adjust = [&] (int x) { return target < nums[] ? skip_left(x) : skip_right(x); }; auto it = lower_bound( nums.begin(), nums.end(), target, [&] (int x, int y) { return adjust(x) < adjust(y); } ); return it != nums.end() && *it == target ? it-nums.begin() : -;
}
};
c 4ms
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int start = ;
int end = numsSize - ;
while (start <= end){
int mid = (start + end) / ;
if (nums[mid] == target)
return mid; if (nums[start] <= nums[mid]){
if (target < nums[mid] && target >= nums[start])
end = mid - ;
else
start = mid + ;
} if (nums[mid] <= nums[end]){
if (target > nums[mid] && target <= nums[end])
start = mid + ;
else
end = mid - ;
}
}
return -;
}
c 4ms 下面的程序只是结果满足测试用例,实际情况凑巧而已。
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int lo = , hi = numsSize - ;
while (lo <= hi) {
int mid = lo + (hi - lo) / ;
if (target == nums[mid])
return mid;
if (nums[mid] < nums[lo]) {
// 6,7,0,1,2,3,4,5
if (target < nums[mid] || target >= nums[lo])
hi = mid - ;
else
lo = mid + ;
} else {
// 2,3,4,5,6,7,0,1
if (target > nums[mid] || target < nums[lo])
lo = mid + ;
else
hi = mid - ;
}
}
return -;
}
81. Search in Rotated Sorted Array II
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
6ms
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
4ms
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II的更多相关文章
- leetcode 153. Find Minimum in Rotated Sorted Array 、154. Find Minimum in Rotated Sorted Array II 、33. Search in Rotated Sorted Array 、81. Search in Rotated Sorted Array II 、704. Binary Search
这4个题都是针对旋转的排序数组.其中153.154是在旋转的排序数组中找最小值,33.81是在旋转的排序数组中找一个固定的值.且153和33都是没有重复数值的数组,154.81都是针对各自问题的版本1 ...
- LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++>
LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++> 给出排序好的一维有重复元素的数组,随机取一个位置断开 ...
- LeetCode 33 Search in Rotated Sorted Array [binary search] <c++>
LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前 ...
- 【Leetcode】81. Search in Rotated Sorted Array II
Question: Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed? ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索之二
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索 II
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 【LeetCode】81. Search in Rotated Sorted Array II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/search-in ...
- LeetCode 81. Search in Rotated Sorted Array II(在旋转有序序列中搜索之二)
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 81. Search in Rotated Sorted Array II (中等)
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
随机推荐
- 浅谈JS的作用域链(二)
上一篇文章中介绍了Execution Context中的三个重要部分:VO/AO,scope chain和this,并详细的介绍了VO/AO在JavaScript代码执行中的表现. 本文就看看Exec ...
- 龟速机器学习总结----day1
机器学习主要工作大致分为以下几步,数据预处理,包括数据切分,特征选取,数据缺失值处理,来了解数据.接下来分割数据,分别分出训练集和测试集.第三步,选择模型,使用训练数据训练模型参数,再对测试数据进行预 ...
- 《Metasploit渗透测试魔鬼训练营》第一章读书笔记
第1章 魔鬼训练营--初识Metasploit 20135301 1.1 什么是渗透测试 1.1.1 渗透测试的起源与定义 如果大家对军事感兴趣,会知道各国军队每年都会组织一些军事演习来锻炼军队的攻防 ...
- Android 學習之旅!(1)
就這樣就過去了一年加一個學期,現在是大二第二個學期而且是下半學期了,以前都是無所事事,沒事睡睡覺,打打遊戲就過去了,但是想到家境和以後的路,我還是決心自己找點東西學習下,以後出去還能有一技之長(雖然可 ...
- 数据结构--图 的JAVA实现(下)
在上一篇文章中记录了如何实现图的邻接表.本文借助上一篇文章实现的邻接表来表示一个有向无环图. 1,概述 图的实现与邻接表的实现最大的不同就是,图的实现需要定义一个数据结构来存储所有的顶点以及能够对图进 ...
- octave基本指令3
octave基本指令3 数据运算 >> a = [1 2; 3 4; 5 6]; >> b = [11 12; 13 14; 15 16]; >> c = [1 1 ...
- Apache Shiro Session Management
https://shiro.apache.org/session-management.html#session-management https://shiro.apache.org/session ...
- [cnbeta]iPhone 2018年全球出货2.25亿部:中国区下滑两成
iPhone 2018年全球出货2.25亿部:中国区下滑两成 2019年01月22日 20:12 501 次阅读 稿源:快科技 0 条评论 https://www.cnbeta.com/artic ...
- python之datetime类
datetime.time时间类,一般用于显示当地时间 import datetime # 新建对象 datetime_obj = datetime.time(hour=12, minute=20, ...
- java 里面的 native 方法
第一篇: 今天花了两个小时把一份关于什么是Native Method的英文文章好好了读了一遍,以下是我依据原文的理解. 一. 什么是Native Method 简单地讲,一个Native Meth ...