33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return its index, otherwise return -. You may assume no duplicate exists in the array. Your algorithm's runtime complexity must be in the order of O(log n). Example : Input: nums = [,,,,,,], target =
Output:
Example : Input: nums = [,,,,,,], target =
Output: -
断点函数单调性,无非单增,或者只有两段,且各自区间范围内单增

C
4 ms
int search(int* nums, int numsSize, int target) {
if(numsSize == ) return -;
int left = , right = numsSize -;
int pivot = ; // turning point
int mid = ;
// search for turning point.
while (left < right)
{
mid = left + (right - left) / ;
if(nums[mid] > nums[right])
{
left = mid + ;
}else{
right = mid;
}
}
pivot = left;
// search for target.
left = , right = numsSize-;
while (left <= right)
{
//printf("mid:%d, left:%d, right:%d\n", mid, left, right);
mid = left + (right - left) / ;
int realmid = (mid + pivot)%numsSize;
if(nums[realmid] == target)
{
return realmid;
}else if (nums[realmid] < target) {
left = mid + ;
}else {
right = mid - ;
}
}
return -;
}
C++ 0ms
static int x=[](){
// toggle off cout & cin, instead, use printf & scanf
std::ios::sync_with_stdio(false);
// untie cin & cout
cin.tie(NULL);
return ;
}();
class Solution {
public:
int search(vector<int>& nums, int target) {
if(nums.empty()) return -;
function<int()> _find = [&nums]() -> int {
if(nums.empty()) return ;
int low = , high = nums.size() -;
while(low <= high) {
int mid = (high-low)/ + low;
if(nums[mid] > nums[high]) low = mid+;
else if(nums[mid] < nums[high]) high = mid;
else return mid;
}
// return low;
};
function <int(int,int)> binary_search = [&nums](int target, int index) -> int {
if(nums.empty()) return -;
int low =index, high = nums.size() - + index;
while (low <= high) {
int mid = (high-low)/ + low;
int value = nums[mid%nums.size()];
if(target < value) high = mid -;
else if(target > value) low = mid + ;
else
return mid%nums.size();
}
return -;
};
int mid = _find();
return binary_search(target, mid);
}
};
c++ 4ms
/*
Explanation Let's say nums looks like this: [12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Because it's not fully sorted, we can't do normal binary search. But here comes the trick: If target is let's say 14, then we adjust nums to this, where "inf" means infinity:
[12, 13, 14, 15, 16, 17, 18, 19, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf] If target is let's say 7, then we adjust nums to this:
[-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] And then we can simply do ordinary binary search. Of course we don't actually adjust the whole array but instead adjust only on the fly only the elements we look at. And the adjustment is done by comparing both the target and the actual element against nums[0]. by StefanPochmann
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14443/C++-4-lines-4ms by rantos22
*/
class Solution {
public:
int search(vector<int> &nums, int target)
{
auto skip_left = [&]( int x) { return x >= nums[] ? numeric_limits<int>::min() : x; };
auto skip_right = [&] (int x) { return x < nums[] ? numeric_limits<int>::max() : x; };
auto adjust = [&] (int x) { return target < nums[] ? skip_left(x) : skip_right(x); }; auto it = lower_bound( nums.begin(), nums.end(), target, [&] (int x, int y) { return adjust(x) < adjust(y); } ); return it != nums.end() && *it == target ? it-nums.begin() : -;
}
};
c 4ms
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int start = ;
int end = numsSize - ;
while (start <= end){
int mid = (start + end) / ;
if (nums[mid] == target)
return mid; if (nums[start] <= nums[mid]){
if (target < nums[mid] && target >= nums[start])
end = mid - ;
else
start = mid + ;
} if (nums[mid] <= nums[end]){
if (target > nums[mid] && target <= nums[end])
start = mid + ;
else
end = mid - ;
}
}
return -;
}
c 4ms 下面的程序只是结果满足测试用例,实际情况凑巧而已。
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int lo = , hi = numsSize - ;
while (lo <= hi) {
int mid = lo + (hi - lo) / ;
if (target == nums[mid])
return mid;
if (nums[mid] < nums[lo]) {
// 6,7,0,1,2,3,4,5
if (target < nums[mid] || target >= nums[lo])
hi = mid - ;
else
lo = mid + ;
} else {
// 2,3,4,5,6,7,0,1
if (target > nums[mid] || target < nums[lo])
lo = mid + ;
else
hi = mid - ;
}
}
return -;
}
81. Search in Rotated Sorted Array II
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
6ms
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
4ms
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II的更多相关文章
- leetcode 153. Find Minimum in Rotated Sorted Array 、154. Find Minimum in Rotated Sorted Array II 、33. Search in Rotated Sorted Array 、81. Search in Rotated Sorted Array II 、704. Binary Search
这4个题都是针对旋转的排序数组.其中153.154是在旋转的排序数组中找最小值,33.81是在旋转的排序数组中找一个固定的值.且153和33都是没有重复数值的数组,154.81都是针对各自问题的版本1 ...
- LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++>
LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++> 给出排序好的一维有重复元素的数组,随机取一个位置断开 ...
- LeetCode 33 Search in Rotated Sorted Array [binary search] <c++>
LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前 ...
- 【Leetcode】81. Search in Rotated Sorted Array II
Question: Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed? ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索之二
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索 II
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 【LeetCode】81. Search in Rotated Sorted Array II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/search-in ...
- LeetCode 81. Search in Rotated Sorted Array II(在旋转有序序列中搜索之二)
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 81. Search in Rotated Sorted Array II (中等)
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
随机推荐
- VIM编辑器常用命令(转)
转自:https://www.cnblogs.com/Nice-Boy/p/6124177.html
- CSS编码规则
/* 和HTML一样使用两个空格来代替制表符 */ div { /* 为了代码的易读性,在每个声明块的左花括号前添加一个空格 */' padding: 15px; /* 每个声明语句的:后应该插入一个 ...
- 每天学习SQL
SELECT table_name FROM information_schema.tables WHERE table_schema='survey170227_main' AND table_na ...
- Socket、Session、Option和Pipe
消息队列NetMQ 原理分析4-Socket.Session.Option和Pipe 消息队列NetMQ 原理分析4-Socket.Session.Option和Pipe 前言 介绍 目的 Soc ...
- 安装虚拟环境和Flask
一.Flask 使用前准备 一. 安装及创建虚拟环境 1. 安装虚拟环境 win + R -> cmd -> pip install virtualenv -> 出现 Success ...
- [2017BUAA软工]第零次作业
第一部分:结缘计算机 你为什么选择计算机专业?你认为你的条件如何?和这些博主比呢?(必答) 我当初选择计算机,是因为:1.北航的前辈对北航计算机专业评价非常高:2.我也喜欢通过编程来代替我完成 ...
- NodeJS简记
C:\Users\Administrator>node > .help .break Sometimes you get stuck, this gets you out .clear A ...
- Delphi中的构造函数的override的问题
TObject的构造方法Create不能被override.因为它是一个静态方法.
- jvm学习二:类加载器
前一节详细的聊了一下类的加载过程,本节聊一聊类的加载工具,类加载器 --- ClassLoader 本想自己写的,查资料的时候查到一篇大神的文章,写的十分详细 大家直接过去看吧http://blo ...
- Mysql 悲观锁
转载:http://chenzhou123520.iteye.com/blog/1860954 悲观锁介绍: 悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处 ...