33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return its index, otherwise return -. You may assume no duplicate exists in the array. Your algorithm's runtime complexity must be in the order of O(log n). Example : Input: nums = [,,,,,,], target =
Output:
Example : Input: nums = [,,,,,,], target =
Output: -
断点函数单调性,无非单增,或者只有两段,且各自区间范围内单增
C
4 ms
int search(int* nums, int numsSize, int target) {
if(numsSize == ) return -; int left = , right = numsSize -;
int pivot = ; // turning point
int mid = ;
// search for turning point.
while (left < right)
{
mid = left + (right - left) / ;
if(nums[mid] > nums[right])
{
left = mid + ;
}else{
right = mid;
}
} pivot = left; // search for target.
left = , right = numsSize-;
while (left <= right)
{ //printf("mid:%d, left:%d, right:%d\n", mid, left, right);
mid = left + (right - left) / ;
int realmid = (mid + pivot)%numsSize;
if(nums[realmid] == target)
{
return realmid;
}else if (nums[realmid] < target) {
left = mid + ;
}else {
right = mid - ;
}
}
return -;
}
C++ 0ms
static int x=[](){
// toggle off cout & cin, instead, use printf & scanf
std::ios::sync_with_stdio(false);
// untie cin & cout
cin.tie(NULL);
return ;
}(); class Solution {
public:
int search(vector<int>& nums, int target) { if(nums.empty()) return -; function<int()> _find = [&nums]() -> int {
if(nums.empty()) return ;
int low = , high = nums.size() -;
while(low <= high) {
int mid = (high-low)/ + low;
if(nums[mid] > nums[high]) low = mid+;
else if(nums[mid] < nums[high]) high = mid;
else return mid; }
// return low;
}; function <int(int,int)> binary_search = [&nums](int target, int index) -> int {
if(nums.empty()) return -;
int low =index, high = nums.size() - + index;
while (low <= high) {
int mid = (high-low)/ + low;
int value = nums[mid%nums.size()];
if(target < value) high = mid -;
else if(target > value) low = mid + ;
else
return mid%nums.size();
}
return -;
}; int mid = _find();
return binary_search(target, mid);
}
};
c++ 4ms
/*
Explanation Let's say nums looks like this: [12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Because it's not fully sorted, we can't do normal binary search. But here comes the trick: If target is let's say 14, then we adjust nums to this, where "inf" means infinity:
[12, 13, 14, 15, 16, 17, 18, 19, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf] If target is let's say 7, then we adjust nums to this:
[-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] And then we can simply do ordinary binary search. Of course we don't actually adjust the whole array but instead adjust only on the fly only the elements we look at. And the adjustment is done by comparing both the target and the actual element against nums[0]. by StefanPochmann
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14443/C++-4-lines-4ms by rantos22
*/
class Solution {
public:
int search(vector<int> &nums, int target)
{
auto skip_left = [&]( int x) { return x >= nums[] ? numeric_limits<int>::min() : x; };
auto skip_right = [&] (int x) { return x < nums[] ? numeric_limits<int>::max() : x; };
auto adjust = [&] (int x) { return target < nums[] ? skip_left(x) : skip_right(x); }; auto it = lower_bound( nums.begin(), nums.end(), target, [&] (int x, int y) { return adjust(x) < adjust(y); } ); return it != nums.end() && *it == target ? it-nums.begin() : -;
}
};
c 4ms
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int start = ;
int end = numsSize - ;
while (start <= end){
int mid = (start + end) / ;
if (nums[mid] == target)
return mid; if (nums[start] <= nums[mid]){
if (target < nums[mid] && target >= nums[start])
end = mid - ;
else
start = mid + ;
} if (nums[mid] <= nums[end]){
if (target > nums[mid] && target <= nums[end])
start = mid + ;
else
end = mid - ;
}
}
return -;
}
c 4ms 下面的程序只是结果满足测试用例,实际情况凑巧而已。
/*
The idea is that when rotating the array, there must be one half of the array that is still in sorted order.
For example, 6 7 1 2 3 4 5, the order is disrupted from the point between 7 and 1. So when doing binary search, we can make a judgement that which part is ordered and whether the target is in that range, if yes, continue the search in that half, if not continue in the other half. -- by flyinghx61
https://leetcode.com/problems/search-in-rotated-sorted-array/discuss/14472/Java-AC-Solution-using-once-binary-search
*/
int search(int* nums, int numsSize, int target) {
int lo = , hi = numsSize - ;
while (lo <= hi) {
int mid = lo + (hi - lo) / ;
if (target == nums[mid])
return mid;
if (nums[mid] < nums[lo]) {
// 6,7,0,1,2,3,4,5
if (target < nums[mid] || target >= nums[lo])
hi = mid - ;
else
lo = mid + ;
} else {
// 2,3,4,5,6,7,0,1
if (target > nums[mid] || target < nums[lo])
lo = mid + ;
else
hi = mid - ;
}
}
return -;
}
81. Search in Rotated Sorted Array II
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
. Search in Rotated Sorted Array II
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [,,,,,,] might become [,,,,,,]). You are given a target value to search. If found in the array return true, otherwise return false. Example : Input: nums = [,,,,,,], target =
Output: true
Example : Input: nums = [,,,,,,], target =
Output: false
Follow up: This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
Would this affect the run-time complexity? How and why?
6ms
bool search(int* nums, int numsSize, int target) {
int l = , r = numsSize - ;
while (l <= r) {
int m = l + (r - l)/;
if (nums[m] == target) return true; //return m in Senumsrch in Rotnumsted numsrrnumsy I
if (nums[l] < nums[m]) { //left hnumslf is sorted
if (nums[l] <= target && target < nums[m])
r = m - ;
else
l = m + ;
} else if (nums[l] > nums[m]) { //right hnumslf is sorted
if (nums[m] < target && target <= nums[r])
l = m + ;
else
r = m - ;
} else l++;
}
return false;
}
4ms
/*
1) everytime check if targe == nums[mid], if so, we find it.
2) otherwise, we check if the first half is in order (i.e. nums[left]<=nums[mid])
and if so, go to step 3), otherwise, the second half is in order, go to step 4)
3) check if target in the range of [left, mid-1] (i.e. nums[left]<=target < nums[mid]), if so, do search in the first half, i.e. right = mid-1; otherwise, search in the second half left = mid+1;
4) check if target in the range of [mid+1, right] (i.e. nums[mid]<target <= nums[right]), if so, do search in the second half, i.e. left = mid+1; otherwise search in the first half right = mid-1; The only difference is that due to the existence of duplicates, we can have nums[left] == nums[mid] and in that case, the first half could be out of order (i.e. NOT in the ascending order, e.g. [3 1 2 3 3 3 3]) and we have to deal this case separately. In that case, it is guaranteed that nums[right] also equals to nums[mid], so what we can do is to check if nums[mid]== nums[left] == nums[right] before the original logic, and if so, we can move left and right both towards the middle by 1. and repeat.
dong.wang.1694
*/
class Solution {
public:
bool search(vector<int>& nums, int target) {
int left = , right = nums.size()-, mid; while(left<=right)
{
mid = (left + right) >> ;
if(nums[mid] == target) return true; // the only difference from the first one, trickly case, just updat left and right
if( (nums[left] == nums[mid]) && (nums[right] == nums[mid]) ) {++left; --right;} else if(nums[left] <= nums[mid])
{
if( (nums[left]<=target) && (nums[mid] > target) ) right = mid-;
else left = mid + ;
}
else
{
if((nums[mid] < target) && (nums[right] >= target) ) left = mid+;
else right = mid-;
}
}
return false;
}
};
33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II的更多相关文章
- leetcode 153. Find Minimum in Rotated Sorted Array 、154. Find Minimum in Rotated Sorted Array II 、33. Search in Rotated Sorted Array 、81. Search in Rotated Sorted Array II 、704. Binary Search
这4个题都是针对旋转的排序数组.其中153.154是在旋转的排序数组中找最小值,33.81是在旋转的排序数组中找一个固定的值.且153和33都是没有重复数值的数组,154.81都是针对各自问题的版本1 ...
- LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++>
LeetCode 81 Search in Rotated Sorted Array II [binary search] <c++> 给出排序好的一维有重复元素的数组,随机取一个位置断开 ...
- LeetCode 33 Search in Rotated Sorted Array [binary search] <c++>
LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前 ...
- 【Leetcode】81. Search in Rotated Sorted Array II
Question: Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed? ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索之二
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
- [LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索 II
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 【LeetCode】81. Search in Rotated Sorted Array II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/search-in ...
- LeetCode 81. Search in Rotated Sorted Array II(在旋转有序序列中搜索之二)
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would this ...
- 81. Search in Rotated Sorted Array II (中等)
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...
随机推荐
- python基础学习笔记(九)
python异常 python用异常对象(exception object)来表示异常情况.遇到错误后,会引发异常.如果异常对象并未被处理或捕捉,程序就会用所谓的 回溯(Traceback, 一种错误 ...
- 个人阅读作业 final
前两次阅读作业链接: http://www.cnblogs.com/SteelPillar/p/4027877.html http://www.cnblogs.com/SteelPillar/p/40 ...
- 软件工程APP进度更新
对原有的界面进行了美化,同时加进了背景音乐,并且优化了算法部分的代码 正在一步一步跟进中 顺带附上上一次组员帮我发的进度地址:http://www.cnblogs.com/case1/p/498192 ...
- 小学四则运算APP 第三阶段冲刺
<?xml version="1.0" encoding="utf-8"?> <ScrollView xmlns:android=" ...
- 开始第一段SPRINT
四则运算Sprint计划 1.小组成员: 李豌湄:master 江丹仪:产品负责人 2.现状: 初步有一个四则运算的程序代码, 我们这个团队的编程基础比较薄弱,还不知道怎么将程序与数据库连接,也是在边 ...
- 【Deep Hash】CNNH
[AAAI 2014] Supervised Hashing via Image Representation Learning [paper] [code] Rongkai Xia , Yan Pa ...
- Android Studio中的Gradle是干什么的
作者:ghui链接:https://www.zhihu.com/question/30432152/answer/48239946来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 原生js作用域(红宝书)
function fn(){ ; alert(a); // 2; } alert(a);//未被定义: alert(b);//全局变量:b=2: ; function fn1(){ ; functio ...
- Jquery 组 checkbox全选按钮
<!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...
- [Java] Thread的start()和run()函数区别
1.start()方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码: 通过调用Thread类的start()方法来启动一个线程,这时此线程是处于就绪状 ...