题目描述

  JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,
他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文
章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,
那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的
标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6
生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?

输入

  输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固
定长度M;以下N行,每一行包含一个使用者了解的单词。这里所有单词及文本的长度不会超过100,并且只可能包
含英文大写字母A..Z

输出

  一个整数,表示可能的文章总数。只需要知道结果模10007的值。

样例输入

2 2
A
B

样例输出

100
 
这道题正着做很麻烦,要考虑好多情况还要去重。那么我们不妨换个思路:不求有多少满足的,求有多少不满足的,然后再用26^m减掉不满足的就是满足的了。那么问题就变成了怎么找不满足的?显然是要根据了解的那些单词来找,只要在trie树上走m步且不遇到终止节点,就说明这个m个字符长的字符串不满足。那么只要在AC自动机上作dp就行了,设f[i][j]表示走了i步,走到编号为j的节点的不满足的方案数。f[i][k]+=f[i-1][j],其中k是j的一个子节点。∑f[m][i]就是总共的不满足方案数了。
最后附上代码。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
struct tree
{
int fail;
int vis[27];
int end;
}a[10010];
char s[100010];
int cnt;
int n;
int m;
int tot=1;
int f[105][10010];
int mod=10007;
int ans;
void build(char *s)
{
int l=strlen(s);
int now=0;
for(int i=0;i<l;i++)
{
int x=(s[i]-'A');
if(a[now].vis[x]==0)
{
a[now].vis[x]=++cnt;
}
now=a[now].vis[x];
}
a[now].end|=1;
}
void bfs()
{
queue<int>q;
for(int i=0;i<26;i++)
{
if(a[0].vis[i]!=0)
{
a[a[0].vis[i]].fail=0;
q.push(a[0].vis[i]);
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<26;i++)
{
if(a[now].vis[i]==0)
{
a[now].vis[i]=a[a[now].fail].vis[i];
}
else
{
a[a[now].vis[i]].end|=a[a[a[now].fail].vis[i]].end;
a[a[now].vis[i]].fail=a[a[now].fail].vis[i];
q.push(a[now].vis[i]);
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
build(s);
}
bfs();
for(int i=1;i<=m;i++)
{
tot*=26;
tot%=mod;
}
f[0][0]=1;
for(int i=1;i<=m;i++)
{
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<26;k++)
{
if(!a[a[j].vis[k]].end)
{
f[i][a[j].vis[k]]+=f[i-1][j];
f[i][a[j].vis[k]]%=mod;
}
}
}
}
for(int i=0;i<=cnt;i++)
{
ans+=f[m][i];
ans%=mod;
}
printf("%d",(tot+mod-ans)%mod);
}

BZOJ1030[JSOI2007]文本生成器——AC自动机+DP的更多相关文章

  1. [BZOJ1030] [JSOI2007] 文本生成器 (AC自动机 & dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  2. [BZOJ1030]:[JSOI2007]文本生成器(AC自动机+DP)

    题目传送门 题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群, 他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  3. [Bzoj1030][JSOI2007]文本生成器(AC自动机&dp)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1030 最最最常见的多串匹配问题!题目求至少包含一个子串的方案数,则可以转化成全部方案-不 ...

  4. 【bzoj1030】[JSOI2007]文本生成器 AC自动机+dp

    题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是生成一篇长度固 ...

  5. 【BZOJ-1030】文本生成器 AC自动机 + DP

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3253  Solved: 1330[Submit][Stat ...

  6. [JSOI2007]文本生成器 --- AC自动机 + DP

    [JSOI2007]文本生成器 题目描述: JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版. 该软件可以随机 ...

  7. BZOJ 1030: [JSOI2007]文本生成器 [AC自动机 DP]

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3953  Solved: 1614[Submit][Stat ...

  8. 洛谷P4052 [JSOI2007]文本生成器 AC自动机+dp

    正解:AC自动机+dp 解题报告: 传送门! 感觉AC自动机套dp的题还挺套路的,,, 一般就先跑遍AC自动机,然后就用dp dp的状态一般都是f[i][j]:有i个字符,是ac自动机上的第j个节点, ...

  9. [bzoj1030][JSOI2007]文本生成器——AC自动机

    Brief Description 给定一些模式串,您需要求出满足以下要求的字符串的个数. 长度为m 包含任意一个模式串 Algorithm Design 以下内容来自神犇博客 首先运用补集转换,转而 ...

随机推荐

  1. Linux系列教程(五)——Linux常用命令之链接命令和权限管理命令

    前一篇博客我们讲解了Linux文件和目录处理命令,还是老生常淡,对于新手而言,我们不需要完全记住命令的详细语法,记住该命令能完成什么功能,然后需要的时候去查就好了,用的多了我们就自然记住了.这篇博客我 ...

  2. 获取2个集合List<T>的共同元素

    获取2个集合List<T>的共同元素,循环2个集合,然后比对. class Bj { public void GetIntersect() { , , , , , , }; , , , , ...

  3. HDU 6165 FFF at Valentine

    题目大意:给出一个有向图,问你这个图中是否对于任意两点\(u,v\),都至少满足\(u\to v\)(\(u\)可到达\(v\),下同)或\(v\to u\)中的一个. 一看就是套路的图论题,我们先把 ...

  4. flask-admin 快速打造博客 系列一

    前言: 我想分享flask+flask-admin快速打造博客的详细教程,可是发现网易课堂已经有相应的免费课堂了,所以就不打算一点一滴的在这里做笔记,分享这些东西了.所以我主要集中在flask-adm ...

  5. Windows环境下实现Consul服务注册和服务发现

    1.首先从官方网站下载Consul,因为我们是使用的Windows系统,所以选择windows版本 https://www.consul.io/downloads.html 2.可以用开发者模式来启动 ...

  6. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...

  7. Steamworks上传游戏

    1.在steamPipe下配置Depot,每个Depot表示程序对应的分支配置语言,操作系统,架构组合等 2.安装,启动项目是配置游戏启动文件的相关信息,不同的操作系统架构等需要添加不同的启动项 3. ...

  8. Centos下分布式跟踪工具Pinpoint的完整部署记录

    一.Pinpoint简单介绍Pinpoint是一款对Java编写的大规模分布式系统的APM工具,有些人也喜欢称呼这类工具为调用链系统.分布式跟踪系统.一般来说,前端向后台发起一个查询请求,后台服务可能 ...

  9. LVS负载均衡下session共享的实现方式-持久化连接

    之前简单介绍LVS负载均衡的高可用方案实施,下面详细说明LVS的session解决方案: LVS算法中,SH算法可以实现将同一客户端的请求总是发送给第一次指定的RS,除非该RS出现故障不能再提供服务. ...

  10. Mysql主从同步(1) - 概念和原理介绍 以及 主从/主主模式 部署记录

    Mysql复制概念Mysql内建的复制功能是构建大型高性能应用程序的基础, 将Mysql数据分布到多个系统上,这种分布机制是通过将Mysql某一台主机数据复制到其它主机(slaves)上,并重新执行一 ...