题目描述

  JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,
他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文
章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,
那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的
标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6
生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?

输入

  输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固
定长度M;以下N行,每一行包含一个使用者了解的单词。这里所有单词及文本的长度不会超过100,并且只可能包
含英文大写字母A..Z

输出

  一个整数,表示可能的文章总数。只需要知道结果模10007的值。

样例输入

2 2
A
B

样例输出

100
 
这道题正着做很麻烦,要考虑好多情况还要去重。那么我们不妨换个思路:不求有多少满足的,求有多少不满足的,然后再用26^m减掉不满足的就是满足的了。那么问题就变成了怎么找不满足的?显然是要根据了解的那些单词来找,只要在trie树上走m步且不遇到终止节点,就说明这个m个字符长的字符串不满足。那么只要在AC自动机上作dp就行了,设f[i][j]表示走了i步,走到编号为j的节点的不满足的方案数。f[i][k]+=f[i-1][j],其中k是j的一个子节点。∑f[m][i]就是总共的不满足方案数了。
最后附上代码。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
struct tree
{
int fail;
int vis[27];
int end;
}a[10010];
char s[100010];
int cnt;
int n;
int m;
int tot=1;
int f[105][10010];
int mod=10007;
int ans;
void build(char *s)
{
int l=strlen(s);
int now=0;
for(int i=0;i<l;i++)
{
int x=(s[i]-'A');
if(a[now].vis[x]==0)
{
a[now].vis[x]=++cnt;
}
now=a[now].vis[x];
}
a[now].end|=1;
}
void bfs()
{
queue<int>q;
for(int i=0;i<26;i++)
{
if(a[0].vis[i]!=0)
{
a[a[0].vis[i]].fail=0;
q.push(a[0].vis[i]);
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<26;i++)
{
if(a[now].vis[i]==0)
{
a[now].vis[i]=a[a[now].fail].vis[i];
}
else
{
a[a[now].vis[i]].end|=a[a[a[now].fail].vis[i]].end;
a[a[now].vis[i]].fail=a[a[now].fail].vis[i];
q.push(a[now].vis[i]);
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
build(s);
}
bfs();
for(int i=1;i<=m;i++)
{
tot*=26;
tot%=mod;
}
f[0][0]=1;
for(int i=1;i<=m;i++)
{
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<26;k++)
{
if(!a[a[j].vis[k]].end)
{
f[i][a[j].vis[k]]+=f[i-1][j];
f[i][a[j].vis[k]]%=mod;
}
}
}
}
for(int i=0;i<=cnt;i++)
{
ans+=f[m][i];
ans%=mod;
}
printf("%d",(tot+mod-ans)%mod);
}

BZOJ1030[JSOI2007]文本生成器——AC自动机+DP的更多相关文章

  1. [BZOJ1030] [JSOI2007] 文本生成器 (AC自动机 & dp)

    Description JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  2. [BZOJ1030]:[JSOI2007]文本生成器(AC自动机+DP)

    题目传送门 题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群, 他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是 ...

  3. [Bzoj1030][JSOI2007]文本生成器(AC自动机&dp)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1030 最最最常见的多串匹配问题!题目求至少包含一个子串的方案数,则可以转化成全部方案-不 ...

  4. 【bzoj1030】[JSOI2007]文本生成器 AC自动机+dp

    题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是生成一篇长度固 ...

  5. 【BZOJ-1030】文本生成器 AC自动机 + DP

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3253  Solved: 1330[Submit][Stat ...

  6. [JSOI2007]文本生成器 --- AC自动机 + DP

    [JSOI2007]文本生成器 题目描述: JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版. 该软件可以随机 ...

  7. BZOJ 1030: [JSOI2007]文本生成器 [AC自动机 DP]

    1030: [JSOI2007]文本生成器 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3953  Solved: 1614[Submit][Stat ...

  8. 洛谷P4052 [JSOI2007]文本生成器 AC自动机+dp

    正解:AC自动机+dp 解题报告: 传送门! 感觉AC自动机套dp的题还挺套路的,,, 一般就先跑遍AC自动机,然后就用dp dp的状态一般都是f[i][j]:有i个字符,是ac自动机上的第j个节点, ...

  9. [bzoj1030][JSOI2007]文本生成器——AC自动机

    Brief Description 给定一些模式串,您需要求出满足以下要求的字符串的个数. 长度为m 包含任意一个模式串 Algorithm Design 以下内容来自神犇博客 首先运用补集转换,转而 ...

随机推荐

  1. 【Codeforces 1110E】Magic Stones

    Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...

  2. QT写TXT文件

    #include <QDir> //头文件 QDir *TEST = new QDir;    bool exist = TEST->exists("TEST") ...

  3. [julia]本地离线安装package

    1.引言 julia最近十分受关注,其结合了python的通用性,Ruby的动态性,C的代码运行速度,R的包管理和数据分析功能,perl的字符串处理能力,lisp的宏能力,matlab的矩阵计算规则, ...

  4. sql实时提交事务

    public void deleteByHbtlidAndDept(String class_id,String depart_id) { Session session = this.getHibe ...

  5. 在平衡树的海洋中畅游(一)——Treap

    记得有一天翔哥毒奶我们: 当你们已经在平衡树的海洋中畅游时,我还在线段树的泥沼中挣扎. 我觉得其实像我这种对平衡树一无所知的蒟蒻也要开一开数据结构了. 然后花了一天啃了下最简单的平衡树Treap,感觉 ...

  6. [Partition][Index]对于Partition表而言,是否Global Index 和 Local Index 可以针对同一个字段建立?

    对于Partition表而言,是否Global Index 和 Local Index 可以针对同一个字段建立? 实验证明,对单独的列而言,要么建立 Global Index, 要么建立 Local ...

  7. 校内模拟赛 SovietPower Play With Amstar

    SovietPower Play With Amstar 题意: 一棵二叉树,每次询问一条路径上的路径和,初始每个点有一个权值1,询问后权值变为0.$n \leq 10^7,m\leq10^6$ 分析 ...

  8. Linq 之 Select 和 where 的用法

    最近开始学习linq.自己也总结一下,方便以后查阅. Select 同 Sql 中的 select 类似,即输出我们要的东东,感觉在 linq 中更加强大. Linq 可以对集合如数组.泛型等操作,这 ...

  9. 利用 John the Ripper 破解用户登录密码

    一.什么是 John the Ripper ? 看到这个标题,想必大家都很好奇,John the Ripper 是个什么东西呢?如果直译其名字的话就是: John 的撕裂者(工具). 相比大家都会觉得 ...

  10. Java Mongo 自定义序列化笔记

    从insert方法入手 1. org.springframework.data.mongodb.repository.support.SimpleMongoRepository.java   inse ...