BZOJ1283 序列(费用流)
不妨看做是先用k个指针指向被选择的前k个元素,然后每次将选中当前第一个元素的指针移到最后,并且需要满足位置变化量>=m。显然这样可以构造出所有的合法方案。那么可以以此建立费用流模型,以一条流量k费用0的链将所有点串起来,再由每个位置向该位置+m连流量1费用为该元素权值的边,最大费用流即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1010
#define S 0
#define T 1001
int n,m,k,p[N],t=-,ans=;
int d[N],q[N],pre[N];
bool flag[N];
struct data{int to,nxt,cap,flow,cost;
}edge[N<<];
void addedge(int x,int y,int z,int c)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,edge[t].cost=c,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,edge[t].cost=-c,p[y]=t;
}
int inc(int &x){x++;if (x>n+) x-=n+;return x;}
bool spfa()
{
memset(d,,sizeof(d));d[S]=;
memset(flag,,sizeof(flag));
int head=,tail=;q[]=S;
do
{
int x=q[inc(head)];flag[x]=;
for (int i=p[x];~i;i=edge[i].nxt)
if (d[x]+edge[i].cost<d[edge[i].to]&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+edge[i].cost;
pre[edge[i].to]=i;
if (!flag[edge[i].to]) q[inc(tail)]=edge[i].to,flag[edge[i].to]=;
}
}while (head!=tail);
return d[T]<=;
}
void ekspfa()
{
while (spfa())
{
int v=n;
for (int i=T;i!=S;i=edge[pre[i]^].to)
v=min(v,edge[pre[i]].cap-edge[pre[i]].flow);
for (int i=T;i!=S;i=edge[pre[i]^].to)
ans-=v*edge[pre[i]].cost,edge[pre[i]].flow+=v,edge[pre[i]^].flow-=v;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1283.in","r",stdin);
freopen("bzoj1283.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
{
int x=read();
addedge(i-,i,k,);
addedge(i,i+m>n?T:i+m,,-x);
}
addedge(n,T,k,);
ekspfa();
cout<<ans;
return ;
}
BZOJ1283 序列(费用流)的更多相关文章
- bzoj 1283 序列 - 费用流
题目传送门 传送门 题目大意 给定一个长度为$n$的序列,要求选出一些数使得原序列中每$m$个连续的数中不超过$K$个被选走.问最大的可能的和. 感觉建图好妙啊.. 考虑把问题转化成选$m$次数,每次 ...
- BZOJ 1283 序列 费用流 网络流 线性规划
https://darkbzoj.cf/problem/1283 给出一个长度为N的正整数序列Ci,求一个子序列,使得原序列中任意长度为M的子串中被选出的元素不超过K(K,M<=100) 个,并 ...
- 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流
[BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...
- 【bzoj1283】序列 线性规划与费用流
题目描述 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和最大. 输入 第1行三个数N,m,k. ...
- [bzoj4842][bzoj1283][Neerc2016]Delight for a Cat/序列_线性规划_费用流
4842: [Neerc2016]Delight for a Cat_1283: 序列 题目大意:ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打隔膜 ...
- [NOI2019]序列(模拟费用流)
题意: 有两个长度为n的序列,要求从每个序列中选k个,并且满足至少有l个位置都被选,问总和最大是多少. \(1\leq l\leq k\leq n\leq 2*10^5\). 首先,记录当前考虑到的位 ...
- luogu P5470 [NOI2019]序列 dp 贪心 费用流 模拟费用流
LINK:序列 考虑前20分 容易想到爆搜. 考虑dp 容易设\(f_{i,j,k,l}\)表示前i个位置 选了j对 且此时A选择了k个 B选择了l个的最大值.期望得分28. code //#incl ...
- P5470-[NOI2019]序列【模拟费用流】
正题 题目链接:https://www.luogu.com.cn/problem/P5470 题目大意 两个长度为\(n\)的序列\(a,b\),求出它们两个长度为\(K\)的子序列,且这两个子序列至 ...
- BZOJ 1283: 序列 (最大费用流)
题意 有n个正整数,要选取里面的一些数,在保证每m个连续的数中最多选k个的情况下,使得得到的值最大. 分析 我们可以把问题先转化为选k次,每一次每m个数只能选一个.那么根据贪心的策略,每m个里一定会选 ...
随机推荐
- MySQL(六)常用语法和数据类型
阅读MySQL语法时,需要注意的规则: ①符号用来指出几个选择中的一个,比如:null | not null表示或者给出null或者给出not null: ②包含在方括号中的关键字或子句(如[like ...
- ARM的9种寻址方式
立即寻址 操作数是立即数,以“#”为前缀,表示 16 进制数值时以“0x”表示. 例: MOV R0,#0xFF00 ;0xFF00 -> R0 SUBS R0,R0,#1 ...
- python winpdb远程调试
1.使用rpdb2.start_embedded_debugger ,注意要将参数fAllowRemote 设置为True 2.winpdb前端GUI使用python2 3.rpdb兼容python2 ...
- C# 简单的 Job 作业~
改变之前的前言,这次咱这样写: 一个习惯只需十天的坚持就可以养成,坏习惯也不例外!吸烟喝酒的我能否做到十天不吸烟喝酒呢? 呵呵 养成习惯关键还要看决心和意志力 恩,努力控烟吧! 废话说完了,就进入咱们 ...
- daterangepicker双日历插件的使用
今天主要是由于项目的需要,做了一个daterangepicker双日历插件,做出来的效果如下: 个人感觉这个daterangepicker双日历插件很好用,并且实现起来也不是很麻烦,我是根据它的官方文 ...
- hibernate 4 需要导入的jar包
<!-- 下面是导入 hibernate 必须的 jar 包 --> <!-- https://mvnrepository.com/artifact/antlr/antlr --&g ...
- Jmeter(二十九)_dotnet搭建本地接口服务
这里使用的服务名为Bookshelf,在github上,自行下载.要运行此服务,需要.Net Core SDK 2.1或更高版本.如果尚未安装,从.Net Core官方网站下载并安装. 在本地克隆项目 ...
- json模块 & pickle模块
之前学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所 ...
- openssl版本升级操作记录
需要部署nginx的https环境,之前是yum安装的openssl,版本比较低,如下: [root@nginx ~]# yum install -y pcre pcre-devel openssl ...
- Oracle日常运维操作总结-数据库的启动和关闭
下面是工作中对Oracle日常管理操作的一些总结,都是一些基本的oracle操作和SQL语句写法,在此梳理成手册,希望能帮助到初学者(如有梳理不准确之处,希望指出). 一.数据库的启动和关闭 1.1 ...