% % time step  https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;

上面代码应该怎样修改?

学习newton raphson and back eluer的更多相关文章

  1. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

  2. Newton's method Drawback and advantage

     Newton Raphson Method: Advantages and Drawbacks:   v=QwyjgmqbR9s" target="_blank"& ...

  3. Boosting(提升方法)之GBDT

    一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...

  4. C++函数式编程实现牛顿法

    In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...

  5. Generalized normal distribution and Skew normal distribution

    Density Function The Generalized Gaussian density has the following form: where  (rho) is the " ...

  6. Tree - XGBoost with parameter description

    In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...

  7. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  8. OpenCASCADE解非线性方程组

    OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...

  9. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

随机推荐

  1. 经典笔试题型----IT经理(IT Manager)

    一般企业设置IT部门都是服务性质,虽然谈IT需要成为战略部门许多年,但用脑子想下,这概率有多少?企业存在的第一目标是:赚取利润.贸易型企业最重要的部门为销售部,生产型企业最重要的部门为销售部与生产部, ...

  2. impala daemon启动失败

    启动错误日志: perl: warning: Setting locale failed. perl: warning: Please check that your locale settings: ...

  3. ffmpeg 编译

    下载FFmpeg git clone https://git.ffmpeg.org/ffmpeg.git 配置编译FFmpeg ./configure --prefix=host --enable-s ...

  4. Android Studio设置连续按两次退出APP

    主要是在onKeyDown方法中进行操作,直接上代码. private long mTime; @Override public boolean onKeyDown(int keyCode, KeyE ...

  5. js中的数值转换

    js中有3个函数可以把非数值转换为数值:Number().parseInt().parseFloat().其中Number()可以用于任何数据类型.parseInt()及parseFloat()用于将 ...

  6. SpringBoot 之jsp

    Boot 内嵌的tomcat 是不支持jsp 的, jetty 也是. 虽然boot也是有默认配置一个InternalResourceViewResolver ,但是它并不像我们在springmvc ...

  7. leetcode621

    public class Solution { public int LeastInterval(char[] tasks, int n) { Dictionary<char, int> ...

  8. EasyARM-iMX283A的make menuconfig出现错误:Install ncurses(ncurses-devel) and try again。

    lin@lin-machine:~/linux-2.6.35.3$ make menuconfig *** Unable to find the ncurses libraries or the ** ...

  9. python Django 无法获取post 参数问题

    对于 request.POST.get(name) 方式取值,需要 from 表单提交数据,如果 是ajax 提交数据,则需要做如下设置: 1.设置请求头,以from表单方式传值 'Content-T ...

  10. 在C++程序中自动加入svn版本号

    原创文章,欢迎阅读,如果您想转载,请在第一行醒目注明原作者和原始链接. 为了方便追查和确认软件bug等问题,给软件或者库赋予版本号是个好办法. 最简单的版本号管理是记录编译时间: cout<&l ...