% % time step  https://ww2.mathworks.cn/matlabcentral/answers/184200-newton-raphson-loop-for-backward-euler
% h = (t_final - t_init)/n; % with n number of time steps
% % vectors
% t = [tinit zeros(,n)]; % time
% y = [yinit zeros(,n)]; % solution
% % Backward Euler loop
% for i = :n
% t(i+) = t(i) + h;
% y_temp = y(i) + h(f(t(i), y(i)));
% y(i+) = y(i) + h*f(t(i+), y_temp);
% end
% for i = :n
% error = ;
% tolerance = 1e-;
% t(i+) = t(i) + h;
% y_temp = y(i) + h*(f(t(i), y(i)));
% while error >= tolerance
% y(i+) = y(i) + h*f(t(i+), y_temp);
% error = abs(y(i+) - y_temp) % (local) absolute error
% y_temp = y(i+);
% end
% end % yold = y(i)+h*f(t(i),y(i));
% while error >= tolerance
% ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
% error = abs(ynew-yold);
% yold=ynew;
% end
% y(i+) = ynew; %y'=y+2*x/y^2 x=[0,2] y(0)=1 https://wenku.baidu.com/view/d18cdaa10b4c2e3f5627632f.html
t_final=;
t_init=;
n=;
tolerance=0.0000001
h = (t_final - t_init)/n;
ti=t_init+h;
yold=+h*f(,);% yold = y(i)+h*f(t(i),y(i));
while error >= tolerance
ynew = yold-(yold-(y(i)+h*f(t(i+),yold)))/(-h*df(t(i+),yold));
error = abs(ynew-yold);
yold=ynew;
end
y(i+) = ynew;

上面代码应该怎样修改?

学习newton raphson and back eluer的更多相关文章

  1. Jacobian矩阵、Hessian矩阵和Newton's method

    在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...

  2. Newton's method Drawback and advantage

     Newton Raphson Method: Advantages and Drawbacks:   v=QwyjgmqbR9s" target="_blank"& ...

  3. Boosting(提升方法)之GBDT

    一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...

  4. C++函数式编程实现牛顿法

    In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac ...

  5. Generalized normal distribution and Skew normal distribution

    Density Function The Generalized Gaussian density has the following form: where  (rho) is the " ...

  6. Tree - XGBoost with parameter description

    In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...

  7. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  8. OpenCASCADE解非线性方程组

    OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...

  9. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

随机推荐

  1. 机器学习之分类器性能指标之ROC曲线、AUC值

    分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...

  2. 【故障处理】ORA-30012的解决过程

    [故障处理]ORA-30012的解决过程 1  BLOG文档结构图 2  前言部分 2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O ...

  3. VS2010中出现无法嵌入互操作类型

    针对word或excel操作时,出现VS2010中,无法嵌入互操作类型“……”,请改用适用的接口的解决方法 问了度娘,解决方法如出一辙:选中项目中引入的dll,鼠标右键,选择属性,把“嵌入互操作类型” ...

  4. Differential Geometry之第三章曲面的局部理论

    第三章.曲面的局部理论 1.曲面的概念 1.1.曲面的概念 1.2.切平面与法向 2.曲面的第一基本形式 3.曲面的第二基本形式 正定矩阵:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零 ...

  5. 敏捷开发概述与路线(转自MBAlib)

    敏捷开发的概述 简单的说,敏捷开发是一种以人为核心.迭代.循序渐进的开发方法.在敏捷开发中,软件项目的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征.换言之,就是把一个大项 ...

  6. Firefox实用插件记录

    之前总结过一个软件推荐的小文,用来记录一直以来在软件开发过程中遇到的各种实用的软件.后来发现里面越来越多的记录了Firefox的插件,所以今天决定单独抽出一个页面来记录Firefox的插件.因为平时大 ...

  7. javaWeb学习总结(8)- JSP基础语法(2)

    任何语言都有自己的语法,JAVA中有,JSP虽然是在JAVA上的一种应用,但是依然有其自己扩充的语法,而且在JSP中,所有的JAVA语句都可以使用. 一.JSP模版元素 JSP页面中的HTML内容称之 ...

  8. 对Java中多态,封装,继承的认识(重要)

                                                            一.Java面向对象编程有三大特性:封装,继承,多态 在了解多态之前我觉得应该先了解一下 ...

  9. Linux 定时运行设置

    脚本设置位置: /etc/cron.d SHELL=/bin/bash PATH=/sbin:/bin:/usr/sbin:/usr/bin MAILTO=root # 每个小时的01分钟执行这个脚本 ...

  10. 重写TreeView模板来实现数据分层展示(二)

    前面一片文章实现TreeView的基本的模板重写,那么照着这个思路,我们再来写一个稍稍复杂的TreeView ,其它的内容都和前面系列内容相似,还是和之前文章介绍的一样,首先看看做出的DEMO的最终样 ...