PAT-Top1001. Battle Over Cities - Hard Version (35)
在敌人占领之前由城市和公路构成的图是连通图。在敌人占领某个城市之后所有通往这个城市的公路就会被破坏,接下来可能需要修复一些其他被毁坏的公路使得剩下的城市能够互通。修复的代价越大,意味着这个城市越重要。如果剩下的城市无法互通,则说明代价无限大,这个城市至关重要。最后输出的是代价最大的城市序号有序列表。借助并查集和Kruskal算法(最小生成树算法)来解决这个问题。
//#include "stdafx.h"
#include <iostream>
#include <algorithm>
#include <vector> using namespace std; struct edge { // edge struct
int u, v, cost;
};
vector<edge> edges; // the number of edges is greater than 500 far and away int cmp(edge a, edge b) { // sort rule
return a.cost < b.cost;
} int parent[]; // union-find set void initParent(int n) { // initialize union-find set
int i;
for(i = ; i <= n; i++) {
parent[i] = -; // a minus means it is a root node and its absolute value represents the number of the set
}
} int findRoot(int x) { // find the root of the set
int s = x;
while(parent[s] > ) {
s = parent[s];
} int temp;
while(s != x) { // compress paths for fast lookup
temp = parent[x];
parent[x] = s;
x = temp;
} return s;
} void unionSet(int r1, int r2) { // union sets. More concretely, merge a small number of set into a large collection
int sum = parent[r1] + parent[r2];
if(parent[r1] > parent[r2]) {
parent[r1] = r2;
parent[r2] = sum;
} else {
parent[r2] = r1;
parent[r1] = sum;
}
} int maxw = ; // max cost
bool infw; // infinite cost int kruskal(int n, int m, int out) { // Kruskal algorithm to get minimum spanning tree
initParent(n); int u, v, r1, r2, num = , i, w = ;
for (i = ; i < m; i++) {
u = edges[i].u;
v = edges[i].v; if (u == out || v == out) {
continue;
} r1 = findRoot(u);
r2 = findRoot(v); if (r1 != r2) {
unionSet(r1, r2);
num++; if (edges[i].cost > ) { // only consider the cost which is not zero
w += edges[i].cost;
} if (num == n - ) {
break;
}
}
} //printf("num %d\n", num);
if (num < n - ) { // spanning tree is not connected
w = -; // distinguish the situation of the occurrence of infinite cost if (!infw) { // when infinite cost first comes out
infw = true;
}
} return w;
} int main() {
int n, m;
scanf("%d%d", &n, &m); int i, status;
edge e;
for (i = ; i < m; i++) {
scanf("%d%d%d%d", &e.u, &e.v, &e.cost, &status);
if (status == ) {
e.cost = ;
} edges.push_back(e);
} if (m > ) {
sort(edges.begin(), edges.end(), cmp);
} int curw, res[], index = ;
for (i = ; i <= n; i++) { // traverse all vertices to obtain the target vertex
curw = kruskal(n, m, i);
if (!infw) { // when infinite cost doesn't come out
if (curw < maxw) {
continue;
} if (curw > maxw) {
index = ;
maxw = curw;
}
res[index++] = i;
} else { // otherwise
if (curw < ) {
if (maxw > ) {
maxw = -;
index = ;
} res[index++] = i;
}
}
} if (index > ) {
for (i = ; i < index; i++) {
if (i > ) {
printf(" ");
}
printf("%d", res[i]);
}
} else {
printf("");
}
printf("\n"); system("pause");
return ;
}

参考资料
pat-top 1001. Battle Over Cities - Hard Version (35)
PAT-Top1001. Battle Over Cities - Hard Version (35)的更多相关文章
- PAT 1013 Battle Over Cities
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- PAT 1013 Battle Over Cities(并查集)
1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...
- pat 1013 Battle Over Cities(25 分) (并查集)
1013 Battle Over Cities(25 分) It is vitally important to have all the cities connected by highways i ...
- PAT 1013 Battle Over Cities (dfs求连通分量)
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- PAT 1013 Battle Over Cities DFS深搜
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- pat1001. Battle Over Cities - Hard Version 解题报告
/**题目:删去一个点,然后求出需要增加最小代价的边集合生成连通图思路:prim+最小堆1.之前图中未破坏的边必用,从而把两两之间可互达的点集合 合并成一个点2.求出不同点集合的最短距离,用prim+ ...
- 「日常训练」Battle Over Cities - Hard Version(PAT-TOP-1001)
题意与分析 题意真的很简单,实在不想讲了,简单说下做法吧. 枚举删除每个点,然后求最小生成树,如果这个路已经存在那么边权就是0,否则按照原来的处理,之后求花费,然后判整个图是否联通(并查集有几个roo ...
- PAT_A1013#Battle Over Cities
Source: PAT A1013 Battle Over Cities (25 分) Description: It is vitally important to have all the cit ...
随机推荐
- Github版本管理以及git使用
1.git客户端编译安装 同步系统时间服务器 ntpdate cn.ntp.org.cn 安装依赖包: [root@baolin ~]# yum install epel-release -y [ro ...
- C#获取一周的工作日显示(星期几)
代码如下: gridBandW1.Caption = System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat.GetDayName ...
- Java 骚操作--生成二维码
https://www.cnblogs.com/lsy131479/p/8808172.html
- nginx配置http和https共存
server { listen ; listen ssl; server_name localhost; #ssl on; ssl_certificate /usr/local/Tengine/ssl ...
- 为什么在球坐标系中,sinTheta2=std::max(T(0), 1 - cosTheta(w) * cosTheta(w));
球坐标系中,计算sin2θ时,采用的是如下公式,感觉不理解为什么要搞一个max函数,直接1 - cosTheta(w) * cosTheta(w)不行吗,另外,即使要用max,max的第一个参数应该是 ...
- zookeeper 学习 zookeeper下载部署
下载 http://mirror.bit.edu.cn/apache/zookeeper/ 校验 解压后得到zookeeper-3.4.10.jar,使用md5sum zookeeper-3.4.10 ...
- [转] Lodash
与underscore 类似 , 是1个js库,内部封装了诸多对字符串.数组.对象等常见数据类型的处理函数. 模块组成 Lodash 提供的辅助函数主要分为以下几类,函数列表和用法实例请查看 Loda ...
- C# 之 HttpResponse 类
Response 对象,派生自HttpResponse 类,该类封装来自 ASP.NET 操作的 HTTP 响应信息.存在于System.Web命名空间下. 注:MIME(Multipurpose I ...
- Storm——Android SQLite数据库管理类库
Storm是一个Android SQLite数据库管理类库,可以通过注解创建表和迁移数据库.它不是ORM框架. 特性: 1.通过@Annotations创建表: 2.通过@Annotations迁 ...
- 网页安全政策"(Content Security Policy,缩写 CSP)
作者:阿里聚安全链接:https://www.zhihu.com/question/21979782/answer/122682029来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...