PAT-Top1001. Battle Over Cities - Hard Version (35)
在敌人占领之前由城市和公路构成的图是连通图。在敌人占领某个城市之后所有通往这个城市的公路就会被破坏,接下来可能需要修复一些其他被毁坏的公路使得剩下的城市能够互通。修复的代价越大,意味着这个城市越重要。如果剩下的城市无法互通,则说明代价无限大,这个城市至关重要。最后输出的是代价最大的城市序号有序列表。借助并查集和Kruskal算法(最小生成树算法)来解决这个问题。
//#include "stdafx.h"
#include <iostream>
#include <algorithm>
#include <vector> using namespace std; struct edge { // edge struct
int u, v, cost;
};
vector<edge> edges; // the number of edges is greater than 500 far and away int cmp(edge a, edge b) { // sort rule
return a.cost < b.cost;
} int parent[]; // union-find set void initParent(int n) { // initialize union-find set
int i;
for(i = ; i <= n; i++) {
parent[i] = -; // a minus means it is a root node and its absolute value represents the number of the set
}
} int findRoot(int x) { // find the root of the set
int s = x;
while(parent[s] > ) {
s = parent[s];
} int temp;
while(s != x) { // compress paths for fast lookup
temp = parent[x];
parent[x] = s;
x = temp;
} return s;
} void unionSet(int r1, int r2) { // union sets. More concretely, merge a small number of set into a large collection
int sum = parent[r1] + parent[r2];
if(parent[r1] > parent[r2]) {
parent[r1] = r2;
parent[r2] = sum;
} else {
parent[r2] = r1;
parent[r1] = sum;
}
} int maxw = ; // max cost
bool infw; // infinite cost int kruskal(int n, int m, int out) { // Kruskal algorithm to get minimum spanning tree
initParent(n); int u, v, r1, r2, num = , i, w = ;
for (i = ; i < m; i++) {
u = edges[i].u;
v = edges[i].v; if (u == out || v == out) {
continue;
} r1 = findRoot(u);
r2 = findRoot(v); if (r1 != r2) {
unionSet(r1, r2);
num++; if (edges[i].cost > ) { // only consider the cost which is not zero
w += edges[i].cost;
} if (num == n - ) {
break;
}
}
} //printf("num %d\n", num);
if (num < n - ) { // spanning tree is not connected
w = -; // distinguish the situation of the occurrence of infinite cost if (!infw) { // when infinite cost first comes out
infw = true;
}
} return w;
} int main() {
int n, m;
scanf("%d%d", &n, &m); int i, status;
edge e;
for (i = ; i < m; i++) {
scanf("%d%d%d%d", &e.u, &e.v, &e.cost, &status);
if (status == ) {
e.cost = ;
} edges.push_back(e);
} if (m > ) {
sort(edges.begin(), edges.end(), cmp);
} int curw, res[], index = ;
for (i = ; i <= n; i++) { // traverse all vertices to obtain the target vertex
curw = kruskal(n, m, i);
if (!infw) { // when infinite cost doesn't come out
if (curw < maxw) {
continue;
} if (curw > maxw) {
index = ;
maxw = curw;
}
res[index++] = i;
} else { // otherwise
if (curw < ) {
if (maxw > ) {
maxw = -;
index = ;
} res[index++] = i;
}
}
} if (index > ) {
for (i = ; i < index; i++) {
if (i > ) {
printf(" ");
}
printf("%d", res[i]);
}
} else {
printf("");
}
printf("\n"); system("pause");
return ;
}
参考资料
pat-top 1001. Battle Over Cities - Hard Version (35)
PAT-Top1001. Battle Over Cities - Hard Version (35)的更多相关文章
- PAT 1013 Battle Over Cities
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- PAT 1013 Battle Over Cities(并查集)
1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...
- pat 1013 Battle Over Cities(25 分) (并查集)
1013 Battle Over Cities(25 分) It is vitally important to have all the cities connected by highways i ...
- PAT 1013 Battle Over Cities (dfs求连通分量)
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- PAT 1013 Battle Over Cities DFS深搜
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- pat1001. Battle Over Cities - Hard Version 解题报告
/**题目:删去一个点,然后求出需要增加最小代价的边集合生成连通图思路:prim+最小堆1.之前图中未破坏的边必用,从而把两两之间可互达的点集合 合并成一个点2.求出不同点集合的最短距离,用prim+ ...
- 「日常训练」Battle Over Cities - Hard Version(PAT-TOP-1001)
题意与分析 题意真的很简单,实在不想讲了,简单说下做法吧. 枚举删除每个点,然后求最小生成树,如果这个路已经存在那么边权就是0,否则按照原来的处理,之后求花费,然后判整个图是否联通(并查集有几个roo ...
- PAT_A1013#Battle Over Cities
Source: PAT A1013 Battle Over Cities (25 分) Description: It is vitally important to have all the cit ...
随机推荐
- pycaffe简明文档
pycaffe简明文档 by ChrisZZ, imzhuo@foxmail.com 2018年01月18日19:00:56 说明 caffe的python接口没有官方说明文档,例如查看一个函数的用法 ...
- SQL 查询表的第一条数据 和 最后一条数据
方法一: 使用TOP SELECT TOP 1 * FROM user; SELECT TOP 1 * FROM user order by id desc; 方法二: 使用LIMIT SELECT ...
- 有道词典Linux版下载安装
http://cidian.youdao.com/index-linux.html Ubuntu http://codown.youdao.com/cidian/linux/youdao-dict_1 ...
- thinkphp调用微信jssdk开发
一:准备文件,并将文件置于网站根目录下 access_token.json {"access_token":"","expire_time" ...
- MySQL应用异常问题解决
MySQL错误:Every derived table must have its own alias 派生表都必须有自己的别名 一般在多表查询时,会出现此错误. 因为,进行嵌套查询的时候子查询出来的 ...
- C#操作windows服务
本文主要说明了Windows服务的安装.卸载.启动.停止.获取服务安装路径.获取服务状态.检查服务是否存在.获取服务版本. 我们需要引用命名空间using System.Configuration.I ...
- 牛客网练习赛t2(线段树)
题解: 好像因为他说了 数据范围全部在ll以内 所以直接暴力就可以过了 比较正常是用线段树来维护 洛谷上有道模板题是支持加,乘,区间和 而这题还多了区间平方和的操作 按照那题的操作 我们维护的时候保证 ...
- python之GIL release (I/O open(file) socket time.sleep)
0.目录 2.线索 C源代码 Py_BEGIN_ALLOW_THREADS Py_END_ALLOW_THREADS3.open(name[, mode[, buffering]]) -> fi ...
- [转]centos安装autossh
centos安装autossh $ sudo yum install wget gcc make$ wget http://www.harding.motd.ca/autossh/autossh-1. ...
- php图文合成文字居中(png图片合成)
header('Content-type:text/html;charset=utf-8'); /** * png图文合成 by wangzhaobo * @param string $pic_pat ...