sklearn神经网络分类
sklearn神经网络分类
神经网络学习能力强大,在数据量足够,隐藏层足够多的情况下,理论上可以拟合出任何方程。
理论部分
sklearn提供的神经网络算法有三个:
neural_network.BernoulliRBM,neural_network.MLPClassifier,neural_network.MLPRgression
我们现在使用MLP(Multi-Layer Perception)做分类,回归其实也类似。该网络由三部分组成:输入层、隐藏层、输出层,其中隐藏层的个数可以人为设定。神经网络学习之后的知识都存在每一层的权重矩阵中,学习的过程也就是不断训练权重达到拟合的效果。权重训练比较常用的方法是反向传递(Backpropagation)
分类代码
#coding=utf-8
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.neural_network import MLPClassifier
import numpy as np
from sklearn.preprocessing import StandardScaler
def main():
iris = datasets.load_iris() #典型分类数据模型
#这里我们数据统一用pandas处理
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['class'] = iris.target
#这里只取两类
data = data[data['class']!=2]
#为了可视化方便,这里取两个属性为例
scaler = StandardScaler()
X = data[['sepal length (cm)','sepal width (cm)']]
scaler.fit(X)
#标准化数据集
X = scaler.transform(X)
Y = data[['class']]
#划分数据集
X_train, X_test, Y_train, Y_test =train_test_split(X, Y)
mpl = MLPClassifier(solver='lbfgs',activation='logistic')
mpl.fit(X_train, Y_train)
print 'Score:\n',mpl.score(X_test, Y_test) #score是指分类的正确率
#区域划分
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = mpl.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
#做出原来的散点图
class1_x = X[Y['class']==0,0]
class1_y = X[Y['class']==0,1]
l1 = plt.scatter(class1_x,class1_y,color='b',label=iris.target_names[0])
class2_x = X[Y['class']==1,0]
class2_y = X[Y['class']==1,1]
l2 = plt.scatter(class2_x,class2_y,color='r',label=iris.target_names[1])
class3_x = X[Y['class']==2,0]
class3_y = X[Y['class']==2,1]
l3 = plt.scatter(class3_x,class3_y,color='g',label=iris.target_names[2])
plt.legend(handles = [l1, l2,l3], loc = 'best')
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()
测试结果
sklearn神经网络分类的更多相关文章
- [转载]sklearn多分类模型
[转载]sklearn多分类模型 这篇文章很好地说明了利用sklearn解决多分类问题时的implement层面的内容:https://www.jianshu.com/p/b2c95f13a9ae.我 ...
- sklearn解决分类问题(KNN,线性判别函数,二次判别函数,KMeans,MLE,人工神经网络)
代码:*******************加密中**************************************
- sklearn多分类问题
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Sklearn中二分类问题的交叉熵计算
二分类问题的交叉熵 在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数.对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集 ...
- matlab练习程序(神经网络分类)
注:这里的练习鉴于当时理解不完全,可能会有些错误,关于神经网络的实践可以参考我的这篇博文 这里的代码只是简单的练习,不涉及代码优化,也不涉及神经网络优化,所以我用了最能体现原理的方式来写的代码. 激活 ...
- SKlearn中分类决策树的重要参数详解
学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学 ...
- sklearn调用分类算法的评价指标
sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...
- tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...
- sklearn特征选择和分类模型
sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. s ...
随机推荐
- WCF 非http寄宿IIS
摘要 从IIS 7 开始, IIS增加了对非HTTP协议的支持. 因此, 自IIS 7之后, 可以将NetTcpBinding等非HTTP协议的Bindings直接寄宿在IIS上面. 本文将介绍如何在 ...
- 加密算法之非对称加密RSA
一:非对称加密的由来 RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的.RSA取名来自开发他们三者的名字.RSA是目前最有 ...
- k8s 1.12.6版的kubeadm默认配置文件
这个对于提高安装配置的便捷性,相当有帮助. 命令如下: kubeadm config print-default 输出如下: apiEndpoint: advertiseAddress: 1.2.3. ...
- Exception in thread "main" java.lang.NullPointerException
1.在window操作系统上,使用eclipse开发工具从hdfs分布式文件系统上下载文件报空指针异常解决方法: log4j:WARN No appenders could be found for ...
- 一脸懵逼学习oracle
oracle的默认用户:system,sys,scott: 1:查看登录的用户名:show user: 2:查看数据字典:dba_users; 3:创建新用户 (1)要连接到Oracle数据库,就需要 ...
- webpack学习笔记--提取公共代码
为什么需要提取公共代码 大型网站通常会由多个页面组成,每个页面都是一个独立的单页应用. 但由于所有页面都采用同样的技术栈,以及使用同一套样式代码,这导致这些页面之间有很多相同的代码. 如果每个页面的代 ...
- openresty capture
local args = {} args["name"] = "张三" args["sex"] = "男" local ...
- python全栈开发day51-jquery插件、@media媒体查询、移动端单位、Bootstrap框架
一.昨日内容回顾 技术行业 (1)ajax技术 XMLHttpRequest() <1>创建XMLHttpRequest()对象 <2>检测状态(通过readyState的改变 ...
- 【转】如何向Android模拟器打电话发短信
转载地址:http://hi.baidu.com/jeremylai/item/420f9c9fe4881fccb62531f7 1. 启动Android Emulator, 查看标题栏找出端口.一般 ...
- Python学习(二十二)—— 前端基础之BOM和DOM
转载自http://www.cnblogs.com/liwenzhou/p/8011504.html 一.前言 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没 ...