pandas数据结构

1.生成一维矩阵模拟数据

import pandas as pd
import numpy as np
s = pd.Series([1,2,3,4,np.nan,9,9])
s2 = pd.date_range('20181201',periods=6)#periods周期

2.生成二维矩阵模拟数据

import pandas as pd
import numpy as np
#(1)创建二维矩阵
df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]],columns=list('ABC'),index=data_index)
#(2)创建二维矩阵自动生成
df1 = pd.DataFrame(np.arange(1,10).reshape(3,3),columns=list('ABC'),index=data_index)
df1
#(3)字典的方式
data_index = pd.date_range('20181016',periods=3)
df2 = pd.DataFrame({
   'A':[1,2,3],
   'B':[4,5,6],
   'C':[7,8,9]
},index=data_index)
df2

3.排序

索引操作

1.索引默认从0开始

  • 操作列df['列名'] df[['列1','列2'.....]]

  • 操作行:df.loc/at[0] df.loc/at[0:3] df.loc/at[[1,5,6]

2.索引被替换为字符串或时间

  • 操作列,:根据列名操作,无变化,同上

  • 操作行:df.loc[0:3]报错 用df.iloc/iat[0:3]代替

按照条件筛选

  • df[df>0] 取出所有大于0的元素

  • df[df.列名>0] 取出对应列大于0的数据

  • isin([值1,值2..]) 判断数据在列表内.返回True/False

赋值

  • df['新列名'] = 值 创建新列

  • df['列名'] = 新值

  • df.iloc[1:3,'A'] = 值

空值判断

  • 空判断df.isna()返回True/False

  • 填充: df.fillna(value=值) ,如果为空,则用值代替

  • 删除空值:df.dropna(how=any/all)

import pandas as pd
import numpy as np
#重置索引
df2.iloc[1,2] = np.nan
df2

#判断
df2.isna()

#填充数据
df3 = df2.fillna(value='bb')#替换,把空值得数据替换成bb,不操控原数组,
df3

#删除有空值的数据,整行都删除
df2.dropna()

#当数组索引数据都为空的时候才删除数据
df2.dropna(how='all')
df2


#删除有空值的数据,整行都删除,原数组不变
xx = df2.dropna(how='any')
xx

未完待续~~~~~

Python数据分析Pandas库数据结构(一)的更多相关文章

  1. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  2. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

  3. Python数据分析Pandas库之熊猫(10分钟一)

    pandas熊猫10分钟教程 排序 df.sort_index(axis=0/1,ascending=False/True) df.sort_values(by='列名') import numpy ...

  4. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  5. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  6. Python的Pandas库简述

    pandas 是 python 的数据分析处理库import pandas as pd 1.读取CSV.TXT文件 foodinfo = pd.read_csv("pandas_study. ...

  7. Python之Pandas库常用函数大全(含注释)

    前言:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. 继续一个新的库,Pandas库.Pandas库围绕Series类型和D ...

  8. python数据分析03Python的数据结构、函数和文件

    我们会从Python最基础的数据结构开始:元组.列表.字典和集合.然后会讨论创建你自己的.可重复使用的Python函数.最后,会学习Python的文件对象,以及如何与本地硬盘交互. 3.1 数据结构和 ...

  9. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

随机推荐

  1. Dubbo 分布式 日志 追踪

    使用dubbo分布式框架进行微服务的开发,一个大系统往往会被拆分成很多不同的子系统,并且子系统还会部署多台机器,当其中一个系统出问题了,查看日志十分麻烦. 所以需要一个固定的流程ID和机器ip地址等来 ...

  2. Qt编写自定义控件2-进度条标尺

    前言 进度条标尺控件的应用场景一般是需要手动拉动进度,上面有标尺可以看到当前进度,类似于qslider控件,其实就是qslider+qprogressbar的杂交版本,不过我才用的是纯qpainter ...

  3. 19款Windows实用软件推荐,满满的干货,总有一款是你必备的

    https://post.smzdm.com/p/745799/ 追加修改(2018-08-20 12:28:23):一些追加内容: 很多人都在吐槽为什么推荐Clover,这里我说明一下,就我了解到的 ...

  4. Hadoop简单介绍

    Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全部工具.包括全文搜索和Web爬虫. 随后在2003 ...

  5. linux的基本操作(RPM包或者安装源码包)

    RPM包或者安装源码包 在windows下安装一个软件很轻松,只要双击.exe的文件,安装提示连续“下一步”即可,然而linux系统下安装一个软件似乎并不那么轻松了,因为我们不是在图形界面下.所以你要 ...

  6. PHP中通过bypass disable functions执行系统命令的几种方式

    原文:http://www.freebuf.com/articles/web/169156.html 一.为什么要bypass disable functions 为了安全起见,很多运维人员会禁用PH ...

  7. Java之JVM监控工具分享

    Java之JVM监控工具分享 JVM的基本知识常用的也就是类加载机制,内存区域.分配.OOM,GC,JVM参数调优 几个链接自己看: 内存区域&类加载机制 分配策略&垃圾回收算法.收集 ...

  8. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  9. CTextUI 文本控件 显示数字方法

    得将数字变成字符串才行 m_ptxtCurrentcharUI->SetText(util::int32ToCString(txtLength)); 或 String.valueOf(x) 或 ...

  10. 20175320 2018-2019-2 《Java程序设计》第4周学习总结

    20175320 2018-2019-2 <Java程序设计>第4周学习总结 教材学习内容总结 本周学习了教材的第五章的内容.在这章中介绍了子类与继承,着重讲了子类继承的规则以及使用sup ...