传说中的网络流24题之一,我刷的第二题菜。

据说这种东西做完了就可以有质的飞越?不过看着这些Luogu评级就有点蒙蔽。

首先我们看一下题目发现这不是均分纸牌的加强板吗,但是那个环的操作极大地限制了我的思想。

我们考虑用费用流求解。

首先拆点,把每一个仓库拆成两个,一个\(x_i\)表示供给别人的货物,一个\(y_i\)表示别人供给的货物。然后建立超级源点\(S\)和超级汇点\(T\)。

我们可以很容易地知道:每一个仓库最后剩下的货物数量必定是总货物数量的平均数

然后就很简单了。我们将所有的货物量\(a_i\)减去平均数,得到新的\(a_i\)。然后讨论:

  • 当\(a_i<0\)时,这个节点需要运入货物。所以我们呢将\(S\)与\(x_i\)相连,容量就是\(-a_i\),费用为\(0\)(至于为什么为\(0\)等下会解释)
  • 当\(a_i>0\)时,这个节点需要运出货物。所以我们呢将\(y_i\)与\(T\)相连,容量就是\(a_i\),费用为\(0\)

然后对于相邻节点还可以连边:

  • 将\(x_i\)与\(y_j\)相连,容量为\(\infty\),费用为\(1\)。这个很好理解吧,相邻的需要直接运输过去即可,费用就是运输量。
  • 将\(x_i\)与\(x_j\)相连,容量为\(\infty\),费用为\(1\)。这个还是要想一下的,相当于将\(x_i\)的货物暂时存放在\(x_j\)处,为其他的运输做准备。

然后由于所有的费用都在这些物体之间的运输中计算掉了,因此源汇点的费用就是\(0\)了。(其实也就是把那些供给的点连到一起方便跑而已,一个常见的技巧)

然后我们直接跑MCMF即可,然后引用一段著名的话:

最大流保证能够平衡货物,而最小费用流能保证运输的货物最少。

CODE

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=205,INF=2e9;
queue <int> q;
struct edge
{
int to,next,c,f;
}e[N<<3];
int head[N],dis[N],cap[N],a[N],pre[N],last[N],s,t,n,ave,cnt=-1;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void add(int x,int y,int c,int f)
{
e[++cnt].to=y; e[cnt].c=c; e[cnt].f=f; e[cnt].next=head[x]; head[x]=cnt;
}
inline void insert(int x,int y)
{
add(x,y,INF,1); add(y,x,0,-1); add(x,y+n,INF,1); add(y+n,x,0,-1);
}
inline bool SPFA(void)
{
memset(pre,-1,sizeof(pre));
memset(dis,63,sizeof(dis));
memset(cap,63,sizeof(cap));
memset(vis,0,sizeof(vis));
while (!q.empty()) q.pop();
q.push(s); vis[s]=1; dis[s]=0;
while (!q.empty())
{
int now=q.front(); q.pop(); vis[now]=0;
for (register int i=head[now];i!=-1;i=e[i].next)
if (e[i].c&&dis[e[i].to]>dis[now]+e[i].f)
{
dis[e[i].to]=dis[now]+e[i].f;
cap[e[i].to]=min(cap[now],e[i].c);
pre[e[i].to]=now; last[e[i].to]=i;
if (!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
}
}
return pre[t]^-1;
}
inline void MCMF(void)
{
int tot=0;
while (SPFA())
{
tot+=cap[t]*dis[t]; int now=t;
while (now!=s)
{
e[last[now]].c-=cap[t];
e[last[now]^1].c+=cap[t];
now=pre[now];
}
}
printf("%d",tot);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); s=0,t=(n<<1)+1;
memset(head,-1,sizeof(head));
memset(e,-1,sizeof(e));
for (i=1;i<=n;++i)
read(a[i]),ave+=a[i]; ave/=n;
for (i=1;i<=n;++i)
{
a[i]-=ave; if (a[i]>0) add(s,i,a[i],0),add(i,s,0,0); else add(i+n,t,-a[i],0),add(t,i+n,0,0);
if (i==1) insert(1,n),insert(1,2); else
if (i==n) insert(n,1),insert(n,n-1); else insert(i,i-1),insert(i,i+1);
}
MCMF(); return 0;
}

Luogu P4016 负载平衡问题的更多相关文章

  1. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  2. P4016 负载平衡问题 网络流

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运 ...

  3. P4016 负载平衡问题(最小费用最大流)

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...

  4. P4016 负载平衡问题 网络流重温

    P4016 负载平衡问题 这个题目现在第二次做,感觉没有这么简单,可能是我太久没有写这种题目了,基本上都忘记了,所以我连这个是费用流都没有看出来. 有点小伤心,知道是费用流之后,我居然还拆点了. 这个 ...

  5. 洛谷P4016负载平衡

    题目 负载平衡问题是一个比较经典的网络流问题,但是该问题还有一个数学贪心法. 所以做这个题前,其实可以做一下均分纸牌问题. 均分纸牌问题 均分纸牌问题可以说是作为贪心的入门题. 做法 首先我们应当把原 ...

  6. (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币

    bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...

  7. 洛谷 [P4016] 负载平衡问题

    贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...

  8. 『题解』洛谷P4016 负载平衡问题

    title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...

  9. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

随机推荐

  1. 国网SGCC_UAP 反编译.class文件源代码

    SGCC_UAP和eclipse操作方式差不多,对于用惯了IDEA和Android Studio的人来说非常不方便,按住Ctrl点击类名不能查看源码. 因为jar包下都是.class文件,所以需要安装 ...

  2. Redis系列(一):Redis的简介与安装

    原文链接(转载请注明出处):Redis系列(一):Redis的简介与安装 什么是 Redis Redis 是一个使用ANSI C 编写的开源.支持网络协议.基于内存.可选持久性的键值对数据库,它是一个 ...

  3. 【redis专题(2)】命令语法介绍之string

    REDIS有5大数据结构:string,link,sortedset,sets,hash. 这5个结构我将用5篇文章来记录各自是怎么用的,然后再用一篇文章来说一下各自的应用场景: 更多语法请参考: h ...

  4. 微信小程序-下拉事件(onPullDownRefresh)不触发

    1.app.json 没有配置 "window": { /* 其他配置信息 */ "enablePullDownRefresh":true } 2.scroll ...

  5. NAudio音频文件转换

    1.NuGet安装 NAudio,项目及demo的网址:https://github.com/naudio/NAudio Encode to MP3, WMA and AAC with MediaFo ...

  6. IE push方法,最后一个参数后面不能跟",",否则报语法错误

    var columns = [[]]; columns[0].push( { field: 'ADDNAME', title: '添加人', width: 80, }, { field: 'ADDDT ...

  7. 深度理解select、poll和epoll

    在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序.在大数据.高并发.集群等一些名词唱得火热之年代,select和poll的 ...

  8. Pandas:让你像写SQL一样做数据分析

    1. 引言 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: Da ...

  9. tkinter学习系列之(五)Checkbutton控件

    目录 目录 前言 (一)基本属性 (二)案例 1.简单的复选框 2.组合复选框 目录 前言 复选框:可以同时多选的一组框,其只有两种状态,选中与未选中. (一)基本属性 (1)说明: tkinter里 ...

  10. 5.3Python函数(三)

    目录 目录 前言 (一)装饰器 ==1.简单的装饰器== ==2.修饰带参数函数的装饰器== ==3.修饰带返回值函数的装饰器== ==4.自身带参数的装饰器== (二)迭代器 (三)生成器 ==1. ...