Luogu P4016 负载平衡问题
传说中的网络流24题之一,我刷的第二题菜。
据说这种东西做完了就可以有质的飞越?不过看着这些Luogu评级就有点蒙蔽。
首先我们看一下题目发现这不是均分纸牌的加强板吗,但是那个环的操作极大地限制了我的思想。
我们考虑用费用流求解。
首先拆点,把每一个仓库拆成两个,一个\(x_i\)表示供给别人的货物,一个\(y_i\)表示别人供给的货物。然后建立超级源点\(S\)和超级汇点\(T\)。
我们可以很容易地知道:每一个仓库最后剩下的货物数量必定是总货物数量的平均数。
然后就很简单了。我们将所有的货物量\(a_i\)减去平均数,得到新的\(a_i\)。然后讨论:
- 当\(a_i<0\)时,这个节点需要运入货物。所以我们呢将\(S\)与\(x_i\)相连,容量就是\(-a_i\),费用为\(0\)(至于为什么为\(0\)等下会解释)
- 当\(a_i>0\)时,这个节点需要运出货物。所以我们呢将\(y_i\)与\(T\)相连,容量就是\(a_i\),费用为\(0\)
然后对于相邻节点还可以连边:
- 将\(x_i\)与\(y_j\)相连,容量为\(\infty\),费用为\(1\)。这个很好理解吧,相邻的需要直接运输过去即可,费用就是运输量。
- 将\(x_i\)与\(x_j\)相连,容量为\(\infty\),费用为\(1\)。这个还是要想一下的,相当于将\(x_i\)的货物暂时存放在\(x_j\)处,为其他的运输做准备。
然后由于所有的费用都在这些物体之间的运输中计算掉了,因此源汇点的费用就是\(0\)了。(其实也就是把那些供给的点连到一起方便跑而已,一个常见的技巧)
然后我们直接跑MCMF即可,然后引用一段著名的话:
最大流保证能够平衡货物,而最小费用流能保证运输的货物最少。
CODE
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=205,INF=2e9;
queue <int> q;
struct edge
{
int to,next,c,f;
}e[N<<3];
int head[N],dis[N],cap[N],a[N],pre[N],last[N],s,t,n,ave,cnt=-1;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void add(int x,int y,int c,int f)
{
e[++cnt].to=y; e[cnt].c=c; e[cnt].f=f; e[cnt].next=head[x]; head[x]=cnt;
}
inline void insert(int x,int y)
{
add(x,y,INF,1); add(y,x,0,-1); add(x,y+n,INF,1); add(y+n,x,0,-1);
}
inline bool SPFA(void)
{
memset(pre,-1,sizeof(pre));
memset(dis,63,sizeof(dis));
memset(cap,63,sizeof(cap));
memset(vis,0,sizeof(vis));
while (!q.empty()) q.pop();
q.push(s); vis[s]=1; dis[s]=0;
while (!q.empty())
{
int now=q.front(); q.pop(); vis[now]=0;
for (register int i=head[now];i!=-1;i=e[i].next)
if (e[i].c&&dis[e[i].to]>dis[now]+e[i].f)
{
dis[e[i].to]=dis[now]+e[i].f;
cap[e[i].to]=min(cap[now],e[i].c);
pre[e[i].to]=now; last[e[i].to]=i;
if (!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
}
}
return pre[t]^-1;
}
inline void MCMF(void)
{
int tot=0;
while (SPFA())
{
tot+=cap[t]*dis[t]; int now=t;
while (now!=s)
{
e[last[now]].c-=cap[t];
e[last[now]^1].c+=cap[t];
now=pre[now];
}
}
printf("%d",tot);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); s=0,t=(n<<1)+1;
memset(head,-1,sizeof(head));
memset(e,-1,sizeof(e));
for (i=1;i<=n;++i)
read(a[i]),ave+=a[i]; ave/=n;
for (i=1;i<=n;++i)
{
a[i]-=ave; if (a[i]>0) add(s,i,a[i],0),add(i,s,0,0); else add(i+n,t,-a[i],0),add(t,i+n,0,0);
if (i==1) insert(1,n),insert(1,2); else
if (i==n) insert(n,1),insert(n,n-1); else insert(i,i-1),insert(i,i+1);
}
MCMF(); return 0;
}
Luogu P4016 负载平衡问题的更多相关文章
- 洛谷 P4016负载平衡问题【费用流】题解+AC代码
洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...
- P4016 负载平衡问题 网络流
P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运 ...
- P4016 负载平衡问题(最小费用最大流)
P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...
- P4016 负载平衡问题 网络流重温
P4016 负载平衡问题 这个题目现在第二次做,感觉没有这么简单,可能是我太久没有写这种题目了,基本上都忘记了,所以我连这个是费用流都没有看出来. 有点小伤心,知道是费用流之后,我居然还拆点了. 这个 ...
- 洛谷P4016负载平衡
题目 负载平衡问题是一个比较经典的网络流问题,但是该问题还有一个数学贪心法. 所以做这个题前,其实可以做一下均分纸牌问题. 均分纸牌问题 均分纸牌问题可以说是作为贪心的入门题. 做法 首先我们应当把原 ...
- (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币
bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...
- 洛谷 [P4016] 负载平衡问题
贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...
- 『题解』洛谷P4016 负载平衡问题
title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...
- P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题
P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...
随机推荐
- loadrunner 脚本开发-文件下载
脚本开发-文件下载 by:授客 QQ:1033553122 下载简介 对 HTTP协议来说,无论是下载文件或者请求页面,对客户端来说,都只是发出一个GET请求,并不会记录点击后的“保存”.“另存为操作 ...
- Web API 方法的返回类型、格式器、过滤器
一.Action方法的返回类型 a) 操作方法的返回类型有四种:void.简单或复杂类型.HttpResponseMessage类型.IHttpActionResult类型. b) 如果返回类型为vo ...
- [20180317]12c TABLE ACCESS BY INDEX ROWID BATCHED3.txt
[20180317]12c TABLE ACCESS BY INDEX ROWID BATCHED3.txt --//简单探究12c TABLE ACCESS BY INDEX ROWID BATCH ...
- SQL注入介绍
一.SQL注入概念 1.sql注入是一种将sql代码添加到输入参数中 2.传递到sql服务器解析并执行的一种攻击手法 举例:某个网站的用户名为name=‘admin’.执行时为select ...
- sysfs_create_group创建sysfs接口
在调试驱动,可能需要对驱动里的某些变量进行读写,或函数调用.可通过sysfs接口创建驱动对应的属性,使得可以在用户空间通过sysfs接口的show和store函数与硬件交互: Syss接口可通过sys ...
- Oracle SQL: DDL DML DCL TCL
Data Definition Language 自带commit,与表结构有关(数据字典)(会等待对象锁) Data Manipulation Language (数据文件相关变化有关,会产生锁)不 ...
- January 31st, 2018 Week 05th Wednesday
Real love is not just instinct, but intent. 真正的爱不是身体上的一见钟情,而是要用心去经营. What is real love? Honestly, I ...
- var a = {m:1}; var b = a; a.n = b ={n:1}; console.log(a);console.log(b);
var a = {m:1}; var b = a; a.n = b ={n:1}; console.log(a); console.log(b); 确定b为{n:1},所以a为 {m:1,n:{n:1 ...
- java中的深复制和浅复制
Java 语言的一个优点就是取消了指针的概念,但也导致了许多程序员在编程中常常忽略了对象与引用的区别,本文会试图澄清这一概念.并且由于Java不能通过简单 的赋值来解决对象复制的问题,在开发过程中,也 ...
- Properties集合_修改配置信息
集合中的数据来自于一个文件 注意:必须要保证该文件中的数据是键值对. 需要使用到读取流 使用load()方法读取已有文件中的数据,存储到Properties集合中 public class Pro ...