洛谷P1004 方格取数-四维DP
题目描述
设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00 )。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数 NN (表示 N \times NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。
输出格式:
只需输出一个整数,表示 22 条路径上取得的最大的和。
输入输出样例
说明
NOIP 2000 提高组第四题
思路:本题题意我就不解释了,一看这个题很像过河卒,过河卒是求路径数目,因此用一个递推求出,类似的本题也可以
我们用一个DP[i][j][k][z]表示第一个人走到map[i][j],第二个人走到map[k][z],此时走这种路径情况下的最大可获得最大取值
而DP[i][j][k][z]是由四个状态转移而来分别是DP[i-1][j][k-1][z],DP[i-1][j][k][z-1],DP[i][j-1][k-1][z],DP[i][j-1][k][z-1];
DP转移方程DP[i][j][k][z]=MAX(DP[i-1][j][k-1][z],DP[i-1][j][k][z-1],DP[i][j-1][k-1][z],DP[i][j-1][k][z-1])+maps[i][j]+maps[k][z];
还需要注意的是,(取走后的方格中将变为数字 0 )因此如果两者相遇就必须减掉一个maps[i][j]因为相遇的话肯定走的步数目相同,并且只有一个人拿到这个数字
因此减去maps[i][j]即可
当然还有什么SBFA,网络流的费用流做法等等非主流做法,以后更新
代码部分
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[][][][];
int maps[][];
int main(){
int n;
int x,y,z;
scanf("%d",&n);
while(){
scanf("%d%d%d",&x,&y,&z);
if (x==y && x==z && x==){
break;
}
maps[x][y]=z;
}
for (int i=;i<=n;i++){
for (int j=;j<=n;j++){
for (int k=;k<=n;k++){
for (int z=;z<=n;z++){
dp[i][j][k][z]=max(max(dp[i-][j][k-][z],dp[i-][j][k][z-]),max(dp[i][j-][k-][z],dp[i][j-][k][z-]))+maps[i][j]+maps[k][z];
if (i==k && j==z)dp[i][j][k][z]-=maps[i][j];
}
}
}
}
cout<<dp[n][n][n][n]<<endl; return ;
}
洛谷P1004 方格取数-四维DP的更多相关文章
- 洛谷 - P1004 - 方格取数 - 简单dp
https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多线程DP/四维DP/】
题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
- 四维动规 洛谷P1004方格取数
分析:这个题因为数据量非常小,可以直接用四维的DP数组 dp[i][j][k][l]表示第一个人走到位置(i,j),第二个人走到位置[k][l]时所取的数的最大和 状态转移方程可以轻松得出为:dp[i ...
- 洛谷 P1004 方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- 【动态规划】洛谷P1004方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
随机推荐
- 用Python实现数据结构之映射
映射与字典 字典dict是Python中重要的数据结构,在字典中,每一个键都对应一个值,其中键与值的关系就叫做映射,也可以说是每一个键都映射到一个值上. 映射(map)是更具一般性的数据类型,具体到P ...
- windwos安装RabbitMQ
目录 windows 安装RabbitMQ 安装erlang 安装rabbitmq 添加windows环境变量 检测rabbitmq状态 启动web管理插件 rabbitmq服务 windows 安装 ...
- django项目中在settings中配置静态文件
STATICFILES_DIRS = [ os.path.join(BASE_DIR,'static'), ] 写成大写可能看不太懂,但是小写的意思非常明显:staticfiles_dir = [ o ...
- Linux 小知识翻译 - 「packet」(网络数据包)
用手机接收邮件或者访问网页的时候,一般会说有「packet费用」(这是日本的说法,在中国好像一般都说 “流量费”),即使对网络不太熟悉的人也知道「packet」这个词(这里也是日本的情况). 那么,「 ...
- 使用Gitkraken进行其他Git操作
使用Gitkraken进行其他Git操作 查看某次 commit 的文件改动 使用 Gitkraken 能非常方便的看到任意一次的 commit 对项目文件的改动. 具体操作是:在树状分支图上单击某个 ...
- BeanFactory中Bean的生命周期
Bean的生命周期图解 集体过程如下: 当调用者通过getBean(beanName)向容器请求某一个Bean时,如果容器注册了org.springframework.beans.factory.co ...
- ZooKeeper学习总结 第二篇:ZooKeeper深入探讨
其实zookeeper系列的学习总结很早就写完了,这段时间在准备找工作的事情,就一直没有更新了.下边给大家送上,文中如有不恰当的地方,欢迎给予指证,不胜感谢!. 1. 数据模型 1.1. 只适合存储小 ...
- Axios发送请求时params和data的区别
在使用axios时,注意到配置选项中包含params和data两者,以为他们是相同的,实则不然. 因为params是添加到url的请求字符串中的,用于get请求. 而data是添加到请求体(body) ...
- UVA127-"Accordian" Patience(模拟)
Problem UVA127-"Accordian" Patience Accept:3260 Submit:16060 Time Limit: 3000 mSec Proble ...
- day12 Python字典
类:dict #字典是无序的 1.前戏 info = { "k1": "v1", # 键值对 "k2": "v2" } ...