洛谷P1004 方格取数-四维DP
题目描述
设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B
某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00 )。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数 NN (表示 N \times NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。
输出格式:
只需输出一个整数,表示 22 条路径上取得的最大的和。
输入输出样例
说明
NOIP 2000 提高组第四题
思路:本题题意我就不解释了,一看这个题很像过河卒,过河卒是求路径数目,因此用一个递推求出,类似的本题也可以
我们用一个DP[i][j][k][z]表示第一个人走到map[i][j],第二个人走到map[k][z],此时走这种路径情况下的最大可获得最大取值
而DP[i][j][k][z]是由四个状态转移而来分别是DP[i-1][j][k-1][z],DP[i-1][j][k][z-1],DP[i][j-1][k-1][z],DP[i][j-1][k][z-1];
DP转移方程DP[i][j][k][z]=MAX(DP[i-1][j][k-1][z],DP[i-1][j][k][z-1],DP[i][j-1][k-1][z],DP[i][j-1][k][z-1])+maps[i][j]+maps[k][z];
还需要注意的是,(取走后的方格中将变为数字 0 )因此如果两者相遇就必须减掉一个maps[i][j]因为相遇的话肯定走的步数目相同,并且只有一个人拿到这个数字
因此减去maps[i][j]即可
当然还有什么SBFA,网络流的费用流做法等等非主流做法,以后更新
代码部分
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[][][][];
int maps[][];
int main(){
int n;
int x,y,z;
scanf("%d",&n);
while(){
scanf("%d%d%d",&x,&y,&z);
if (x==y && x==z && x==){
break;
}
maps[x][y]=z;
}
for (int i=;i<=n;i++){
for (int j=;j<=n;j++){
for (int k=;k<=n;k++){
for (int z=;z<=n;z++){
dp[i][j][k][z]=max(max(dp[i-][j][k-][z],dp[i-][j][k][z-]),max(dp[i][j-][k-][z],dp[i][j-][k][z-]))+maps[i][j]+maps[k][z];
if (i==k && j==z)dp[i][j][k][z]-=maps[i][j];
}
}
}
}
cout<<dp[n][n][n][n]<<endl; return ;
}
洛谷P1004 方格取数-四维DP的更多相关文章
- 洛谷 - P1004 - 方格取数 - 简单dp
https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多线程DP/四维DP/】
题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 洛谷P1004 方格取数
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容 ...
- 四维动规 洛谷P1004方格取数
分析:这个题因为数据量非常小,可以直接用四维的DP数组 dp[i][j][k][l]表示第一个人走到位置(i,j),第二个人走到位置[k][l]时所取的数的最大和 状态转移方程可以轻松得出为:dp[i ...
- 洛谷 P1004 方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
- 【动态规划】洛谷P1004方格取数
题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...
随机推荐
- 非对称加密与GPG/PGP
最近浏览博客的时候,经常会看到博主展示出自己的公钥,于是对 GPG/PGP 产生兴趣.下面简单记录相关文章的链接,方便以后了解. 简介: 1991年,程序员Phil Zimmermann为了避开政府的 ...
- 三叔学FPGA系列之二:Cyclone V中的POR、配置、初始化,以及复位
对于FPGA内部的复位,之前一直比较迷,这两天仔细研究官方数据手册,解开了心中的诸多疑惑,感觉自己又进步了呢..... 原创不易,转载请转原文,注明出处,谢谢. 一.关于POR(Power-On ...
- centos7下安装docker(9.3容器对资源的使用限制-Block IO))
Block IO:指的是磁盘的读写,docker 可以通过设置权重,限制bps和iops的方式控制容器读写磁盘的带宽 注:目前block IO限额只对direct IO(不使用文件缓存)有效. 1.B ...
- mysql 创建 mb4 字符集数据库
create database sina default character set utf8mb4 collate utf8mb4_unicode_ci; show variables like ' ...
- 20145203盖泽双 《网络对抗技术》实践九:Web安全基础实践
20145203盖泽双 <网络对抗技术>实践九:Web安全基础实践 1.实践目标 1.理解常用网络攻击技术的基本原理. 2.Webgoat下进行相关实验:SQL注入攻击.XSS攻击.CSR ...
- python中.py和.pyw文件的区别
:本文为博主原创文章,未经博主允许不得转载. 以下是摘录自百度问题的答案: 严格来说,它们之间的不同就只有一个:视窗运行它们的时候调用不同的执行档案. 视窗用 python.exe 运行 .py ,用 ...
- MongoDB shell 介绍
MongoDB shell 介绍 MongoDB自带javascript shell, 可在shell中使用命令行与MongoDB实列交互.shell可以执行管理操作,检查运行实列等等操作. 一:如何 ...
- Echo团队Alpha冲刺随笔 - 第一天
项目冲刺情况 进展 每个人开始搭建自己要用的各种框架.库,基本实现了登录功能 问题 除了框架使用问题外,暂未遇到其他疑难杂症 心得 今天有一个还可以的开头,相信后续会挺顺利的 今日会议内容 黄少勇 今 ...
- centos 6.X下建立arduino开发环境
一.安装arduino IDE 1.下载linux下arduino IDE安装包,从网址:http://arduino.cc/en/Main/Software下载,如果这个网址打不开,可从网盘下载:h ...
- nginx安装升级及配置详解
1.简介 2.安装配置 3.配置文件介绍 4.启动.停止.平滑重启.升级 一.Nginx简介 Nginx(engine x)是俄罗斯人Igor Sysoev编写的一款高性能的http和反向代理服务器. ...