In a galaxy far far away there is an ancient game played among the planets. The specialty of the game
is that there is no limitation on the number of players in each team, as long as there is a captain in
the team. (The game is totally strategic, so sometimes less player increases the chance to win). So the
coaches who have a total of N players to play, selects K (1 ≤ K ≤ N) players and make one of them
as the captain for each phase of the game. Your task is simple, just find in how many ways a coach
can select a team from his N players. Remember that, teams with same players but having different
captain are considered as different team.
Input
The first line of input contains the number of test cases T ≤ 500. Then each of the next T lines contains
the value of N (1 ≤ N ≤ 109
), the number of players the coach has.
Output
For each line of input output the case number, then the number of ways teams can be selected. You
should output the result modulo 1000000007.
For exact formatting, see the sample input and output.
Sample Input
3
1
2
3
Sample Output
Case #1: 1
Case #2: 4
Case #3: 12

题意:给你一个n,n个人,标号为1~n,现在选若干人组成一队,并且选出一个队长,问说可以选多少种队伍,队长,人数,成员不同均算不同的队伍。

题解:我们枚举选择k个人(1<=k<=n)

答案就是: 1*c(n,1)+2*c(n,2)+.......+n*c(n,n);

   接着提出n

    化为:    n*(c(n-1,0)+c(n-1,1)+c(n-1,2)+......+c(n-1,n-1));

  答案就是:n*(2^(n-1));快速幂求解

//meek///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <vector>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int inf = ;
const int MOD= ; ll quick_pow(ll x,ll p) {
if(!p) return ;
ll ans = quick_pow(x,p>>);
ans = ans*ans%MOD;
if(p & ) ans = ans*x%MOD;
return ans;
}
int main() {
int T,cas=;
ll n;
scanf("%d",&T);
while(T--) {
scanf("%lld",&n);
printf("Case #%d: %lld\n",cas++,n*quick_pow(,n-)%MOD);
}
return ;
}

DAIMA

    

UVA 11609 Teams 组合数学+快速幂的更多相关文章

  1. Uva 11609 Teams (组合数学)

    题意:有n个人,选不少于一个人参加比赛,其中一人当队长,有多少种选择方案. 思路:我们首先C(n,1)选出一人当队长,然后剩下的 n-1 人组合的总数为2^(n-1),这里用快速幂解决 代码: #in ...

  2. UVa 11609 组队(快速幂)

    https://vjudge.net/problem/UVA-11609 题意: 有n个人,选一个或多个人参加比赛,其中一名当队长,有多少种方案?如果参赛者完全相同,但队长不同,算作不同的方案. 思路 ...

  3. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  4. hdu 5363 组合数学 快速幂

    Time Limit: 2000/1000 MS (Java/Others)   Memory Limit: 131072/131072 K (Java/Others) Problem Descrip ...

  5. codeforces 677C C. Vanya and Label(组合数学+快速幂)

    题目链接: C. Vanya and Label time limit per test 1 second memory limit per test 256 megabytes input stan ...

  6. BZOJ_1008_[HNOI2008]_越狱_(简单组合数学+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰 ...

  7. Uva 10006 Carmichael Numbers (快速幂)

    题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...

  8. UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...

  9. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

随机推荐

  1. hdu 1575 Tr A

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和), ...

  2. Java求职面试准备之常见算法

    最近在求职面试,整理一下常见面试算法: 对TestAlgorithms.java中方法的测试见JunitTestAlgorithms.java(引入了junit4) 1.TestAlgorithms. ...

  3. 15个最好的Bootstrap设计工具推荐

    摘要:Bootstrap不单单是一个框架,更确切的说,它改变了整个游戏规则.该框架使得许多应用和网站的设计开发变得简便许多,而且它将大量的HTML框架普及成了产品. Bootstrap是由前Twitt ...

  4. Javascript是一个事件驱动语言

    面向原型这种说法我没在网上找到

  5. Go语言的类型转化

    Go语言要求不同的类型之间必须做显示的转换.转化分为类型转换和接口转化. 类型转换的思路是: X类型需要转换为Y类型,语法是T(x). 如果对于某些地方的优先级拿不准可以自己加()约束,变成(T)(X ...

  6. node.js的学习

    require('http') 内置模块 server.js var http = require('http'); function start(){ server = http.createSer ...

  7. [转]WinExec、ShellExecute和CreateProcess及返回值判断方式

    [转]WinExec.ShellExecute和CreateProcess及返回值判断方式 http://www.cnblogs.com/ziwuge/archive/2012/03/12/23924 ...

  8. Oracle数据文件在open状态被删除的恢复记录

    1.查看当前状态: SQL> select status from v$instance; STATUS------------OPEN SQL> show parameter name; ...

  9. String、StringBuffer与StringBuilder的区别

    String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...

  10. 使用usb+preseed在virtualbox上安装ubuntu(一)

    1.制作usb boot盘,在ubuntu上使用startup disk creater将ubuntu-server12.04.iso写入到usb中: 2.修改syslinux文件夹中的syslinu ...