#include<iostream>
#include<stdio.h>
#include<iomanip>
#define MAXN 100000
using namespace std; double a[MAXN];
double x1 = ;
double x2 = ;
double x3 = ;
void give_list(int x,int y,int z);
double min(double a,double b,double c);
int main()
{
//freopen("acm.acm","r",stdin);
double x = ;
double y = ;
double z = ;
give_list(x,y,z);
int num;
while()
{
cin>>num;
if(num == )
break;
cout<<setiosflags(ios::fixed)<<setprecision()<<a[num-]<<endl;
}
} ///////////////////////////////////////////////////////
//由2,3,5,7的乘积组成的数列,由小到大!第一个数默认是1!
///////////////////////////////////////////////////////
void give_list(int x,int y,int z)
{
a[]=;
int len;
double m;
len=;
while(len <= MAXN)//核心的代码,产生器!
{
m=min(a[int(x1)]*x,a[int(x2)]*y,a[int(x3)]*z);
if(m==a[int(x1)]*x)x1++;
if(m==a[int(x2)]*y)x2++;
if(m==a[int(x3)]*z)x3++;
a[len++]=m;
}
} double min(double a,double b,double c)//四个数中最小的;
{
a=a<b?a:b;
a=a<c?a:c;
return a;
}

关注我的公众号,当然,如果你对Java, Scala, Python等技术经验,以及编程日记,感兴趣的话。

技术网站地址: vmfor.com

POJ 1338的更多相关文章

  1. 递推(三):POJ中的三道递推例题POJ 1664、POJ 2247和POJ 1338

    [例9]放苹果(POJ 1664) Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. In ...

  2. [ACM训练] 算法初级 之 数据结构 之 栈stack+队列queue (基础+进阶+POJ 1338+2442+1442)

    再次面对像栈和队列这样的相当基础的数据结构的学习,应该从多个方面,多维度去学习. 首先,这两个数据结构都是比较常用的,在标准库中都有对应的结构能够直接使用,所以第一个阶段应该是先学习直接来使用,下一个 ...

  3. poj 1338 Ugly Numbers

    原题链接:http://poj.org/problem?id=1338 优先队列的应用,如下: #include<cstdio> #include<cstdlib> #incl ...

  4. poj 1338 Ugly Numbers(丑数模拟)

    转载请注明出处:viewmode=contents">http://blog.csdn.net/u012860063? viewmode=contents 题目链接:id=1338&q ...

  5. 51nod 1010 只包含因子2 3 5的数 && poj - 1338 Ugly Numbers(打表)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1010 http://poj.org/problem?id=1338 首先 ...

  6. Poj 1338 Ugly Numbers(数学推导)

    一.题目大意 本题要求写出前1500个仅能被2,3,5整除的数. 二.题解 最初的想法是从1开始检验该数是否只能被2,3,5整除,方法是这样的,对于一个数,如果它能被2整除,就除以2,如果它能被3整除 ...

  7. POJ 2591 1338 2545 2247(数列递归衍生问题,思路挺妙)

    四道题的难度: 2591<1338<2545<2247 POJ 2591 Set Definition: 这是从discuss里看来的,写的挺好,直接copy,根据我的代码稍有改动( ...

  8. Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)

    一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...

  9. 2013-2014集训之DP

    第一周: 经过漫长的时间,终于有时间来写一下结题报告. 地址http://acm.hust.edu.cn/vjudge/contest/view.action?cid=36180#overview A ...

随机推荐

  1. ode.js 版本控制 nvm 和 n 使用 及 nvm 重启终端失效的解决方法

    今天的话题包括2个部分 node.js 下使用 nvm 或者 n 来进行版本控制 nvm 安装node.js 版本后,重启终端 node , npm 环境变量失效 第一部分 用什么来管理 node.j ...

  2. Unity3d Shortcuts

    参考:http://www.ceeger.com/Manual/ 场景视图导航  Click-drag to drag the camera around. 点击拖拽平移场景视图 Hold Alt a ...

  3. poj 2153 Rank List

    原题链接:http://poj.org/problem?id=2153 简单题,map,平衡树均可.. map: #include<algorithm> #include<iostr ...

  4. JavaScript高级程序设计之作用域链

    JavaScript只有函数作用域:每个函数都有个作用域链直达window对象. 变量的查找由内而外层层查找,找到即止. 同时不仅可以查找使用,甚至可以改变外部变量. var color = &quo ...

  5. require.js的用法

    我采用的是一个非常流行的库require.js. 一.为什么要用require.js? 最早的时候,所有Javascript代码都写在一个文件里面,只要加载这一个文件就够了.后来,代码越来越多,一个文 ...

  6. 安装Ubuntu 15.10后要做的事

    Ubuntu 15.10发布了,带来了很多新特性,同样也依然带着很多不习惯的东西,所以装完系统后还要进行一系列的优化. 1.删除libreoffice libreoffice虽然是开源的,但是Java ...

  7. TFS(Taobao File System)安装方法

    文章目录: 一.TFS(Taobao File System)安装方法 二.TFS(Taobao File System)配置dataServer.分区.挂载数据盘 三.TFS(Taobao File ...

  8. APP_Store - 怎样为iOS8应用制作预览视频

    关于iOS 8应用预览视频的话题,从设计.技术规范,到录屏.编辑工具,介绍的都比较详尽:建议收藏,在接下来用的到的时候作以参考.下面进入译文. 最近一两个月里,苹果的世界里出现了很多新东西,比如屏幕更 ...

  9. C#设计模式之装饰者模式(Decorator Pattern)

    1.概述 装饰者模式,英文名叫做Decorator Pattern.装饰模式是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 2 ...

  10. 典型用户 persona

    persona 典型用户 1.姓名:王涛 2.年龄:22 3.收入:基本无收入 4.代表用户在市场上的比例和重要性:王涛为铁道学生.本软件的用户主要是学生和老师,尤其是广大的铁大学子,所以此典型用户的 ...