$$\bex \bbu\in L^p(0,T;L^{q,\infty}),\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q\leq\infty. \eex$$ or $$\bex \sen{\bbu}_{L^{p,\infty}(0,T;L^{q,\infty})}\leq \ve,\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q\leq \infty \eex$$

[Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014]的更多相关文章

  1. [Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011]

    $$\bex \int_0^T\frac{\sen{\bbu}_{L^{q,\infty}}^p}{\ve+\ln \sex{e+\sen{\bbu}_{L^\infty}}}\rd s<\in ...

  2. [Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001]

    $$\bex \bbu\in L^{p,r}(0,T;L^{q,\infty}(\bbR^3)),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\inf ...

  3. [Papers]NSE, $\pi$, Lorentz space [Suzuki, NA, 2012]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s} ...

  4. [Papers]NSE, $\pi$, Lorentz space [Suzuki, JMFM, 2012]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s} ...

  5. [Papers]MHD, $\pi$, Lorentz space [Suzuki, DCDSA, 2011]

    $$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} +\sen{{\bf b}}_{L^{\gamma,\infty}(0,T;L^{\ ...

  6. [Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]

    $$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$

  7. [Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \fra ...

  8. [Papers]NSE, $u_3$, Lebesgue space [Cao-Titi, IUMJ, 2008]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \fra ...

  9. [Papers]NSE, $u_3$, Lebesgue space [Kukavica-Ziane, Nonlinearity, 2006]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}<q ...

随机推荐

  1. ubuntu下搭建cocos2dx编程环境-中

        上篇文章里讲了在ubuntu下部署cocos2d-x开发环境,这篇文章主要示范在ubuntu下部署cocos2d-x android开发环境.分开写就是因为我看很多文章里都将这两件事情混杂着写 ...

  2. QT 读取文件夹下所有文件(超级简单的方法,不需要QDirIterator)

    之前,用标准C++写过读取文件夹.现在用QT重写代码,顺便看了下QT如何实现,还是相当简单的.主要用到QDir,详细文档可见这里 A program that lists all the files ...

  3. 转载网页博客:ie7bug:div容器下的img与div存在间隙

    1.代码及在浏览器上的显示 ie7: ie8+: Firefox: Chrome: 可以看出ie7上在div容器下添加img,div与img中有间隙,而在ie8+和其他浏览器上均显示正常 网页源代码如 ...

  4. 【原创】Eclipse中为SVN设置快捷键

            SVN是深受开发者喜爱的版本控制工具,其较CVS有更好的控制策略.在Android开发中,我也选择SVN作为版本控制工具.Eclipse的SVN插件名叫Subclipse,可以到htt ...

  5. CentOS下支持exFAT与NTFS

    exFAT: 1.下载fuse-exfat支持软件: exfat支持是通过fuse模块的方式支持的,其项目地址是: https://code.google.com/p/exfat/ ,当前版本是:1. ...

  6. Web Server 使用WebClient 发送https请求 The underlying connection was closed: Could not establish trust relationship for the SSL/TLS secure channel

    使用WebClient 发送https请求 使用WebClient发送请求时,并且是以https协议: WebClient webClient = new WebClient(); string re ...

  7. Android里的多线程知识点

    1.Thread类与Runnable接口 子类继承Thread类实现跑自己逻辑的run方法,在调用Thread类的start方法后,会自动调用run方法,该对象只可以调用一次start方法,即Thre ...

  8. poj1988-种类并查集

    题意:有N个立方体(1<=N <=30,000),相应地初始时每个立方体放在一个栈中,有两种操作:1.M X Y:把包含第X个立方体的栈中的所有立方体当做一个整体拿出来压入包含第Y个立方体 ...

  9. 《c程序设计语言》读书笔记--每行一个单词打印输入的字符,除去空符

    #include <stdio.h> int main() { int c; while((c = getchar()) != EOF) { if(c != '\n' && ...

  10. leetcode:Multiply Strings

    Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...