Ombrophobic Bovines

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 16539 Accepted: 3605

Description

FJ’s cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm’s fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

  • Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

  • Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output “-1”.

Sample Input

3 4

7 2

0 4

2 6

1 2 40

3 2 70

2 3 90

1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

USACO 2005 March Gold

一道神伤的题,敲完Dinic结果不对,以为自己的最大流敲错了,后来知道要拆点,搞了一天的TLE加WA

#include <map>
#include <list>
#include <climits>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define PI acos(-1.0)
#define MMM 0x3f3f3f3f
#define RR freopen("input.txt","r",stdin)
#define WW freopen("output.txt","w",stdout) const LL INF = 1e15; const int Max = 410; struct node
{
int v;
int w;
int next;
} Edge[321000];
LL M[Max][Max];
int ww[Max],c[Max];
int F,P,top;
int s,t;
int vis[Max];
int Sum;
int Head[Max],cur[Max];
void Build(int u,int v,int w)
{
Edge[top].v=v;
Edge[top].w=w;
Edge[top].next=Head[u];
Head[u]=top++;
Edge[top].v=u;
Edge[top].w=0;
Edge[top].next=Head[v];
Head[v]=top++;
}
void init()
{
for(int i=1; i<=F; i++)
{
for(int j=i; j<=F; j++)
{ M[i][j]=M[j][i]=INF;
}
}
}
void Floyd()
{
for(int k=1; k<=F; k++)
{
for(int i=1; i<=F; i++)
{
for(int j=1; j<=F; j++)
{
if(M[i][j]>M[i][k]+M[k][j])
M[i][j]=M[i][k]+M[k][j];
}
}
}
}
void ReBuild(LL MaxNum)
{
top=0;
memset(Head,-1,sizeof(Head));
for(int i=1; i<=F; i++)
{
Build(s,i,ww[i]);
Build(i+F,t,c[i]);
}
for(int i=1; i<=F; i++)
{
Build(i,i+F,MMM);
}
for(int i=1; i<=F; i++)
{
for(int j=i+1; j<=F; j++)
{
if(M[i][j]<=MaxNum)
{
Build(i,j+F,MMM);
Build(j,i+F,MMM);
}
}
}
}
int BFS()
{
memset(vis,0,sizeof(vis));
queue<int >Q;
Q.push(0);
vis[0]=1;
while(!Q.empty())
{
int a=Q.front();
Q.pop();
for(int i=Head[a]; i!=-1; i=Edge[i].next)
{
if(Edge[i].w>0&&!vis[Edge[i].v])
{
vis[Edge[i].v]=vis[a]+1;
Q.push(Edge[i].v);
}
}
}
return vis[t];
}
int DFS(int star,int num)
{
if(star==t||num==0)
{
return num;
}
int data=0;
int ant;
for(int& i=cur[star]; i!=-1; i=Edge[i].next)//不加&会超时,请大神指教
{
if(vis[star]+1==vis[Edge[i].v]&&(ant=DFS(Edge[i].v,min(Edge[i].w,num)))>0)
{
Edge[i].w-=ant;
Edge[i^1].w+=ant;
num-=ant;
data+=ant;
if(!num)
{
break;
}
}
}
return data;
}
int Dinic()
{
int ant=0;
while(BFS())
{
for(int i=0; i<=t; i++)
{
cur[i]=Head[i];
}
ant+=DFS(s,MMM);
}
return ant;
}
void Search()
{
LL L=1,R=INF-1;
LL ans=-1;
int ant;
while(L<=R)
{
LL mid=(L+R)/2;
ReBuild(mid);
ant=Dinic();
if(ant>=Sum)
{
ans=mid;
R=mid-1;
}
else
{
L=mid+1;
}
}
cout<<ans<<endl;
}
int main()
{
int u,v,w;
while(~scanf("%d%d",&F,&P))
{
init();
Sum=0;
s=0;
t=2*F+1;
for(int i=1; i<=F; i++)
{
scanf("%d%d",&ww[i],&c[i]);
Sum+=ww[i];
}
for(int i=1; i<=P; i++)
{
scanf("%d %d %d",&u,&v,&w);
if(M[u][v]>w)
{
M[u][v]=M[v][u]=w;
}
}
Floyd();
Search();
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Ombrophobic Bovines 分类: POJ 图论 最短路 查找 2015-08-10 20:32 2人阅读 评论(0) 收藏的更多相关文章

  1. 选择排序 分类: 算法 c/c++ 2014-10-10 20:32 509人阅读 评论(0) 收藏

    选择排序(假设递增排序) 每次选取从当前结点到末尾结点中最小的一个与当前结点交换,每一轮固定一个元素位置. 时间复杂度O(n^2),空间复杂度O(1).下面的示例代码以带头结点的链表为存储结构: #i ...

  2. A Knight's Journey 分类: POJ 搜索 2015-08-08 07:32 2人阅读 评论(0) 收藏

    A Knight's Journey Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35564 Accepted: 12119 ...

  3. 哈希-Snowflake Snow Snowflakes 分类: POJ 哈希 2015-08-06 20:53 2人阅读 评论(0) 收藏

    Snowflake Snow Snowflakes Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 34762 Accepted: ...

  4. Wormholes 分类: POJ 2015-07-14 20:21 21人阅读 评论(0) 收藏

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35235   Accepted: 12861 Descr ...

  5. DNA Sorting 分类: POJ 2015-06-23 20:24 9人阅读 评论(0) 收藏

    DNA Sorting Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 88690 Accepted: 35644 Descrip ...

  6. Binary Tree 分类: POJ 2015-06-12 20:34 17人阅读 评论(0) 收藏

    Binary Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6355   Accepted: 2922 Descr ...

  7. Self Numbers 分类: POJ 2015-06-12 20:07 14人阅读 评论(0) 收藏

    Self Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22101   Accepted: 12429 De ...

  8. Poj 2559 最大矩形面积 v单调栈 分类: Brush Mode 2014-11-13 20:48 81人阅读 评论(0) 收藏

    #include<iostream> #include<stack> #include<stdio.h> using namespace std; struct n ...

  9. Dijkstra with priority queue 分类: ACM TYPE 2015-07-23 20:12 4人阅读 评论(0) 收藏

    POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra) //================================================= ...

随机推荐

  1. 从零开始攻略PHP(6)——代码重用与函数编写的一些注意事项

    一个新的项目是这样创建的:它将已有的可重新利用的组件进行组合,并将新的开发难度降低到最小. 代码重用的好处:降低成本.提升可靠性和一致性. 1.使用require()和include()函数 使用一条 ...

  2. Swift游戏实战-跑酷熊猫 12 与平台的碰撞

    这节主要实现熊猫和平台的碰撞,实现熊猫在平台上奔跑 要点 对平台进行物理属性设置 //设置物理体以及中心点 self.physicsBody = SKPhysicsBody(rectangleOfSi ...

  3. html 标签自己居中

    <div style="width: 200px; height: 200px; border: 1px solid red; margin: 0 auto;">< ...

  4. 树形DP(统计直径的条数 HDU3534)

    分析:首先树形dp(dfs计算出每个点为根节点的子树的最长距离和次长距离),然后找出L=dis[u][0]+dis[u][1]最长的那个点u,然后在以u为根节点dfs,统计长度为L的条数:具体做法:把 ...

  5. 20145207《Java程序设计》第三周学习总结

    前言 24号回来的,书看的差不多了,博客一直没写,求老师原谅呀!!!!!哈哈哈哈.博客我从今天开始补,对着书,一天最多能弄个两篇毕竟写这个东西挺费心思德,当然我做事慢也有关系.但是我会尽快的.老实讲, ...

  6. STL lower_bound upper_bound binary-search

    STL中的二分查找——lower_bound .upper_bound .binary_search 二分查找很简单,原理就不说了.STL中关于二分查找的函数有三个lower_bound .upper ...

  7. C++之路进阶——codevs2404(糖果)

    2404 糖果 2011年省队选拔赛四川  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 幼儿园里有N个小朋友,l ...

  8. paper 87:行人检测资源(下)代码数据【转载,以后使用】

    这是行人检测相关资源的第二部分:源码和数据集.考虑到实际应用的实时性要求,源码主要是C/C++的.源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考.(欢迎补充 ...

  9. paper 38 :entropy

    图像熵计算 真是为了一个简单的基础概念弄的心力交瘁,请教了一下师姐,但是并没有真的理解,师弟我太笨呀~~所以,我又查熵的中文含义和相关的出处!共勉吧~~ 1.信息熵: 利用信息论中信息熵概念,求出任意 ...

  10. oracle表分区

    注:新建分区表前要先准备好要用的表空间 一. oracle分区类型: 范围分区(Range分区) 列表分区(List分区) 散列分区(Hash分区) 组合分区(Composite Partitioni ...