Ombrophobic Bovines

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 16539 Accepted: 3605

Description

FJ’s cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm’s fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

  • Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

  • Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output “-1”.

Sample Input

3 4

7 2

0 4

2 6

1 2 40

3 2 70

2 3 90

1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

USACO 2005 March Gold

一道神伤的题,敲完Dinic结果不对,以为自己的最大流敲错了,后来知道要拆点,搞了一天的TLE加WA

#include <map>
#include <list>
#include <climits>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define PI acos(-1.0)
#define MMM 0x3f3f3f3f
#define RR freopen("input.txt","r",stdin)
#define WW freopen("output.txt","w",stdout) const LL INF = 1e15; const int Max = 410; struct node
{
int v;
int w;
int next;
} Edge[321000];
LL M[Max][Max];
int ww[Max],c[Max];
int F,P,top;
int s,t;
int vis[Max];
int Sum;
int Head[Max],cur[Max];
void Build(int u,int v,int w)
{
Edge[top].v=v;
Edge[top].w=w;
Edge[top].next=Head[u];
Head[u]=top++;
Edge[top].v=u;
Edge[top].w=0;
Edge[top].next=Head[v];
Head[v]=top++;
}
void init()
{
for(int i=1; i<=F; i++)
{
for(int j=i; j<=F; j++)
{ M[i][j]=M[j][i]=INF;
}
}
}
void Floyd()
{
for(int k=1; k<=F; k++)
{
for(int i=1; i<=F; i++)
{
for(int j=1; j<=F; j++)
{
if(M[i][j]>M[i][k]+M[k][j])
M[i][j]=M[i][k]+M[k][j];
}
}
}
}
void ReBuild(LL MaxNum)
{
top=0;
memset(Head,-1,sizeof(Head));
for(int i=1; i<=F; i++)
{
Build(s,i,ww[i]);
Build(i+F,t,c[i]);
}
for(int i=1; i<=F; i++)
{
Build(i,i+F,MMM);
}
for(int i=1; i<=F; i++)
{
for(int j=i+1; j<=F; j++)
{
if(M[i][j]<=MaxNum)
{
Build(i,j+F,MMM);
Build(j,i+F,MMM);
}
}
}
}
int BFS()
{
memset(vis,0,sizeof(vis));
queue<int >Q;
Q.push(0);
vis[0]=1;
while(!Q.empty())
{
int a=Q.front();
Q.pop();
for(int i=Head[a]; i!=-1; i=Edge[i].next)
{
if(Edge[i].w>0&&!vis[Edge[i].v])
{
vis[Edge[i].v]=vis[a]+1;
Q.push(Edge[i].v);
}
}
}
return vis[t];
}
int DFS(int star,int num)
{
if(star==t||num==0)
{
return num;
}
int data=0;
int ant;
for(int& i=cur[star]; i!=-1; i=Edge[i].next)//不加&会超时,请大神指教
{
if(vis[star]+1==vis[Edge[i].v]&&(ant=DFS(Edge[i].v,min(Edge[i].w,num)))>0)
{
Edge[i].w-=ant;
Edge[i^1].w+=ant;
num-=ant;
data+=ant;
if(!num)
{
break;
}
}
}
return data;
}
int Dinic()
{
int ant=0;
while(BFS())
{
for(int i=0; i<=t; i++)
{
cur[i]=Head[i];
}
ant+=DFS(s,MMM);
}
return ant;
}
void Search()
{
LL L=1,R=INF-1;
LL ans=-1;
int ant;
while(L<=R)
{
LL mid=(L+R)/2;
ReBuild(mid);
ant=Dinic();
if(ant>=Sum)
{
ans=mid;
R=mid-1;
}
else
{
L=mid+1;
}
}
cout<<ans<<endl;
}
int main()
{
int u,v,w;
while(~scanf("%d%d",&F,&P))
{
init();
Sum=0;
s=0;
t=2*F+1;
for(int i=1; i<=F; i++)
{
scanf("%d%d",&ww[i],&c[i]);
Sum+=ww[i];
}
for(int i=1; i<=P; i++)
{
scanf("%d %d %d",&u,&v,&w);
if(M[u][v]>w)
{
M[u][v]=M[v][u]=w;
}
}
Floyd();
Search();
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Ombrophobic Bovines 分类: POJ 图论 最短路 查找 2015-08-10 20:32 2人阅读 评论(0) 收藏的更多相关文章

  1. 选择排序 分类: 算法 c/c++ 2014-10-10 20:32 509人阅读 评论(0) 收藏

    选择排序(假设递增排序) 每次选取从当前结点到末尾结点中最小的一个与当前结点交换,每一轮固定一个元素位置. 时间复杂度O(n^2),空间复杂度O(1).下面的示例代码以带头结点的链表为存储结构: #i ...

  2. A Knight's Journey 分类: POJ 搜索 2015-08-08 07:32 2人阅读 评论(0) 收藏

    A Knight's Journey Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35564 Accepted: 12119 ...

  3. 哈希-Snowflake Snow Snowflakes 分类: POJ 哈希 2015-08-06 20:53 2人阅读 评论(0) 收藏

    Snowflake Snow Snowflakes Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 34762 Accepted: ...

  4. Wormholes 分类: POJ 2015-07-14 20:21 21人阅读 评论(0) 收藏

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35235   Accepted: 12861 Descr ...

  5. DNA Sorting 分类: POJ 2015-06-23 20:24 9人阅读 评论(0) 收藏

    DNA Sorting Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 88690 Accepted: 35644 Descrip ...

  6. Binary Tree 分类: POJ 2015-06-12 20:34 17人阅读 评论(0) 收藏

    Binary Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6355   Accepted: 2922 Descr ...

  7. Self Numbers 分类: POJ 2015-06-12 20:07 14人阅读 评论(0) 收藏

    Self Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22101   Accepted: 12429 De ...

  8. Poj 2559 最大矩形面积 v单调栈 分类: Brush Mode 2014-11-13 20:48 81人阅读 评论(0) 收藏

    #include<iostream> #include<stack> #include<stdio.h> using namespace std; struct n ...

  9. Dijkstra with priority queue 分类: ACM TYPE 2015-07-23 20:12 4人阅读 评论(0) 收藏

    POJ 1511 Invitation Cards(单源最短路,优先队列优化的Dijkstra) //================================================= ...

随机推荐

  1. 分布式领域CAP理论

    分布式领域CAP理论,Consistency(一致性), 数据一致更新,所有数据变动都是同步的Availability(可用性), 好的响应性能Partition tolerance(分区容错性) 可 ...

  2. interesting js

    [‎5/‎3/‎2016 4:18 PM] Calos Chen: function a(b,e){var a=0;a+=b;if(e){console.log(b+e);return;} retur ...

  3. ACdream 1157 Segments(CDQ分治)

    题目链接:http://acdream.info/problem?pid=1157 Problem Description 由3钟类型操作:1)D L R(1 <= L <= R < ...

  4. WindowsService 安装后报错: 无法启动计算机“.”上的服务 解决方案

    问题 : 根据客户的需求做了一个小程序,需要有对WindowsService 安装,卸载,启动,停止的操作. 编译好之后在我的工程内直接Run 没问题.直接在\bin\Debug 点小程序运行,任何操 ...

  5. zw版【转发·台湾nvp系列Delphi例程】HALCON TestObjDef

    zw版[转发·台湾nvp系列Delphi例程]HALCON TestObjDef procedure TForm1.Button1Click(Sender: TObject);var img : HU ...

  6. 将服务费用DIY到底----走出软件作坊:三五个人十来条枪 如何成为开发正规军(十)[转]

    前一段时间,讲了一系列开发经理.实施经理.服务经理的工具箱:开发经理的工具箱---走出软件作坊:三五个人十来条枪 如何成为开发正规军(三) ,实施经理的工具箱--走出软件作坊:三五个人十来条枪 如何成 ...

  7. 锋利的JQuery(四)

    表单: 一个表单有三个基本组成部分:表单标签.表单域.表单按钮 Cookie: 在jQuery中有一款Cookie插件,<script src="js/jquery.cookie.js ...

  8. 单例模式在Java和C#中的实现

    单例模式算是最常见和最容易理解一种设计模式了.通常是指某一个类只有一实例存在,存在的空间我认为可以理解为该类所在的应用系统内,还有一种是在某一个容器内单一存在,比如像spring的IOC容器(作用域为 ...

  9. Linux内核配置机制(make menuconfig 、Kconfig、Makefile)讲解【转】

    本文转载自:http://www.codexiu.cn/linux/blog/34801/ 前面我们介绍模块编程的时候介绍了驱动进入内核有两种方式:模块和直接编译进内核,并介绍了模块的一种编译方式—— ...

  10. cronolog日志切割

    1. 下载安装 cronolog,它的主页 http://cronolog.org . 下载的是源码,安装过程就是 ./configure, make, make install,最后一步可直接把 s ...