7. SVM松弛变量
我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。
看下面两张图:
可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。
这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间隔大于1)。我们设计得到新的模型如下(也称软间隔):
引入非负参数后(称为松弛变量),就允许某些样本点的函数间隔小于1,即在最大间隔区间里面,或者函数间隔是负数,即样本点在对方的区域中。而放松限制条件后,我们需要重新调整目标函数,以对离群点进行处罚,目标函数后面加上的
就表示离群点越多,目标函数值越大,而我们要求的是尽可能小的目标函数值。
这里的C是离群点的权重,C越大表明离群点对目标函数影响越大,也就是越不希望看到离群点。我们看到,目标函数控制了离群点的数目和程度,使大部分样本点仍然遵守限制条件。
引入松弛变量(惩罚因子)后,有一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。
先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:
方形的点是负类。,
,
是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是
,
和
,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。
对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本,因此我们的目标函数中因松弛变量而损失的部分就变成了:
其中是正样本,
是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。
那和
怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说
是5,那确定
的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,
就可以定为500(因为10,000:100=100:1)。
但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类本应该有的区域)。所以给和
确定比例更好的方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。
但是这样还不够好,因为有的类别样本确实很集中,这不是提供的样本数量多少的问题,这是类别本身的特征,这个时候即便超球的半径差异很大,也不应该赋予两个类别不同的惩罚因子。这样应该怎么解决呢……实际中,完美的方法是没有的,只要根据需要,选择实现简单又合用的就好了。
7. SVM松弛变量的更多相关文章
- 数据集偏斜 - class skew problem - 以SVM松弛变量为例
原文 接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C.回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的 ...
- SVM松弛变量-记录毕业论文3
上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通 ...
- SVM学习笔记
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...
- Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子
转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及 ...
- SVM学习(五):松弛变量与惩罚因子
https://blog.csdn.net/qll125596718/article/details/6910921 1.松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而 ...
- SVM学习(续)核函数 & 松弛变量和惩罚因子
SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...
- 1. SVM简介
从这一部分开始,将陆续介绍SVM的相关知识,主要是整理以前学习的一些笔记内容,梳理思路,形成一套SVM的学习体系. 支持向量机(Support Vector Machine)是Cortes和Vapni ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 机器学习实战笔记(Python实现)-05-支持向量机(SVM)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
随机推荐
- ASP.NET Core 折腾笔记一
前言: 在ASP.NET Core 1.0时,曾折腾过一次,后因发现不了System.Data而停止. 更因VS2015提示过期Delete掉VS了,其实主要还是笔记本的硬盘空间吃紧. 快双十一了,本 ...
- 你知道C#中的Lambda表达式的演化过程吗?
那得从很久很久以前说起了,记得那个时候... 懵懂的记得从前有个叫委托的东西是那么的高深难懂. 委托的使用 例一: 什么是委托? 个人理解:用来传递方法的类型.(用来传递数字的类型有int.float ...
- iOS---iOS10适配iOS当前所有系统的远程推送
一.iOS推送通知简介 众所周知苹果的推送通知从iOS3开始出现, 每一年都会更新一些新的用法. 譬如iOS7出现的Silent remote notifications(远程静默推送), iOS8出 ...
- 多线程的通信和同步(Java并发编程的艺术--笔记)
1. 线程间的通信机制 线程之间通信机制有两种: 共享内存.消息传递. 2. Java并发 Java的并发采用的是共享内存模型,Java线程之间的通信总是隐式执行,通信的过程对于程序员来说是完全透 ...
- sql的那些事(一)
一.概述 书写sql是我们程序猿在开发中必不可少的技能,优秀的sql语句,执行起来吊炸天,性能杠杠的.差劲的sql,不仅使查询效率降低,维护起来也十分不便.一切都是为了性能,一切都是为了业务,你觉得你 ...
- [算法]——快速排序(Quick Sort)
顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...
- android 事件分发机制详解(OnTouchListener,OnClick)
昨天做东西做到触摸事件冲突,以前也经常碰到事件冲突,想到要研究一下Android的事件冲突机制,于是从昨天开始到今天整整一天时间都要了解这方面的知识,这才懂了安卓的触摸和点击事件的机制.探究如下: 首 ...
- Struts2入门(五)——OGNL和标签库
一.前言 OGNL和标签库的作用,粗暴一点说,就是减少在JSP页面中出现java代码,利于维护. 1.1.OGNL 1.1.1.什么是OGNL? OGNL(Object-Graph Navigatio ...
- BPM费控管理解决方案分享
一.方案概述费用是除经营成本外企业的最主要支出,费用管理是财务管理的核心之一,加强企业内控管理如:费用申请.费用报销.费用分摊.费用审批.费用控制和费用支付等,通过科学有效的管理方法规范企业费用管理, ...
- [原创]ubuntu16.04LTS使用细节
如何给自己安装的应用创建桌面图标 拿php开发神器phpstorm为例,找到可执行文件所在路径. 这里是/home/haive/PhpStorm/bin/phpstorm.sh 打开dash,搜索&q ...