Description


Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input


The input contains multiple test cases. Each test cases consists of some lines.

Line 1: Contains the integer k.

Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).

Output


Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input


2
8 7
11 9

Sample Output


31

Hint


All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source


POJ Monthly--2006.07.30, Static

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1e6+10;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(b==0){
x=1;y=0;
d=a;
}else{
exgcd(b,a%b,d,y,x),y-=x*(a/b);
}
}
int a[N],r[N],n;
ll solve(){
ll ta=a[1],tr=r[1],x,y,d;
for(int i=2;i<=n;i++){
exgcd(ta,a[i],d,x,y);
if((r[i]-tr)%d) return -1;
x=(r[i]-tr)/d*x%(a[i]/d);
tr+=x*ta;ta=ta/d*a[i];
tr%=ta;
}
return tr>0?tr:tr+ta;
}
int main(){
while(~scanf("%d",&n)){
REP(i,1,n) a[i]=read(),r[i]=read();
Out(solve());
puts("");
}
return 0;
}

【POJ 2891】Strange Way to Express Integers(一元线性同余方程组求解)的更多相关文章

  1. POJ 2891 Strange Way to Express Integers (解一元线性方程组)

    求解一元线性同余方程组: x=ri(mod ai) i=1,2,...,k 解一元线性同余方程组的一般步骤:先求出前两个的解,即:x=r1(mod a1)     1x=r2(mod a2)     ...

  2. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  3. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. POJ-2891-Strange Way to Express Integers(线性同余方程组)

    链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which intr ...

  7. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

随机推荐

  1. html 文本溢出显示省略号 .....

  2. Linux修改文件的权限,拥有者,所属组

    修改文件的权限,拥有者,所属组 1.设置文件的权限(chmod) ①方式一(建议使用这种方式) 命名:chomd 755 文件名 ②方式二 命名:chomd -R +x 文件名 2.设置文件的拥有者( ...

  3. Lock wait timeout exceeded; try restarting transaction linux设置mysql innodb_lock_wait_timeout

    root权限下: vi /etc/my.cnf 在[mysqld]配置下面加入 innodb_lock_wait_timeout=value # value是你想设置的值 重启mysql /etc/i ...

  4. What's mean ORA-25191?

    1.在给表授权的时候.报错ORA-25191 检查该表为IOT 表 . --因为不是按照单表方式授予权限,而是按照用户的方式授予权限,所以该表的父亲表都在该用户下,所以这个报错可以忽略. 2/ 在参考 ...

  5. C. Alyona and mex

    http://codeforces.com/contest/740/problem/C 构造思维题. 第一直觉就是区间长度+1的最小值就是答案. 然而不知道怎么去构造这个序列. 其实就是每个区间,都要 ...

  6. ES--在windows上快速安装

    环境准备 java环境部署: Java下载路径:http://download.oracle.com/otn-pub/java/jdk/8u181-b13/96a7b8442fe848ef90c96a ...

  7. border 0px和border none的区别

    border:0px这个表示的是边框为0像素,表示边框的像素 border:none 这个表示无边框(边框的绘制方式),边框的绘制方式有很多种:solid dashed等等

  8. MySQL优化步骤和my.cnf优化配置

    1.查看机器配置,指三大件:cpu.内存.硬盘 2.查看mysql配置参数 3.查看mysql运行状态,可以用mysqlreport工具来查看 4.查看mysql的慢查询 依次解决了以上问题之后,再来 ...

  9. SpringBoot项目不占用端口启动

    @EnableScheduling @SpringBootApplication public class Application { public static void main(String[] ...

  10. LN : leetcode 730 Count Different Palindromic Subsequences

    lc 730 Count Different Palindromic Subsequences 730 Count Different Palindromic Subsequences Given a ...