传送门

题意

一个人在数轴上来回走,以pi的概率走i步i∈[1, m],给定n(数轴长度),m,e(终点),s(起点),d(方向),求从s走到e经过的点数期望

分析

设E[x]是人从x走到e经过点数的期望值,显然对于终点有:E[e] = 0

一般的:$$E[x] = \sum_i^m((E[x+i]+i) * p[i])$$

(走i步经过i个点,所以是E[x+i]+i)

建立模型:高斯消元每个变量都是一个互不相同的独立的状态,由于人站在一个点,还有一个状态是方向!例如人站在x点,有两种状态向前、向后,不能都当成一种状态建立方程,所以要把两个方向化为一个方向从而使状态不受方向的影响

实现:

n个点翻过去(除了头尾两个点~~~)变为2*(n-1)个点,例如:

\(6个点:012345 -> 0123454321\)

那么显然,从5开始向右走其实就是相当于往回走

然后方向就由两个状态转化成一个状态的,然后每个点就是只有一种状态了,对每个点建立方程高斯消元即可

bfs判断是否可以到达终点,顺便建立方程

参考KIDx的解题报告

trick

代码

#include<bits/stdc++.h>
using namespace std;
#define M 205
#define eps 1e-8
int equ, var;
double a[M][M], x[M]; int Gauss ()
{
int i, j, k, col, max_r;
for (k = 0, col = 0; k < equ && col < var; k++, col++)
{
max_r = k;
for (i = k+1; i < equ; i++)
if (fabs (a[i][col]) > fabs (a[max_r][col]))
max_r = i;
if (k != max_r)
{
for (j = col; j < var; j++)
swap (a[k][j], a[max_r][j]);
swap (x[k], x[max_r]);
}
x[k] /= a[k][col];
for (j = col+1; j < var; j++) a[k][j] /= a[k][col];
a[k][col] = 1;
for (i = 0; i < equ; i++) if (i != k)
{
x[i] -= x[k] * a[i][k];
for (j = col+1; j < var; j++) a[i][j] -= a[k][j] * a[i][col];
a[i][col] = 0;
}
}
return 1;
} //has[x]表示人在x点时的变量号,因为我们只用可达状态建立方程,所以需要编号
int has[M], vis[M], k, e, n, m;
double p[M], sum; int bfs (int u)
{
memset (has, -1, sizeof(has));
memset (a, 0, sizeof(a)); //忘记初始化WA勒,以后得注意
memset (vis, 0, sizeof(vis));
int v, i, flg = 0;
queue<int> q;
q.push (u);
k = 0;
has[u] = k++;
while (!q.empty ())
{
u = q.front ();
q.pop ();
if (vis[u]) continue;
vis[u] = 1;
if (u == e || u == n-e) //终点有两个,你懂的~
{
a[has[u]][has[u]] = 1;
x[has[u]] = 0;
flg = 1;
continue;
}
//E[x] = sum ((E[x+i]+i) * p[i])
// ----> E[x] - sum(p[i]*E[x+i]) = sum(i*p[i])
a[has[u]][has[u]] = 1;
x[has[u]] = sum;
for (i = 1; i <= m; i++)
{
//非常重要!概率为0,该状态可能无法到达,如果还去访问并建立方程会导致无解
if (fabs (p[i]) < eps) continue;
v = (u + i) % n;
if (has[v] == -1) has[v] = k++;
a[has[u]][has[v]] -= p[i];
q.push (v);
}
}
return flg;
} int main()
{
int t, s, d, i;
scanf ("%d", &t);
while (t--)
{
scanf ("%d%d%d%d%d", &n, &m, &e, &s, &d);
n = 2*(n-1);
sum = 0;
for (i = 1; i <= m; i++)
{
scanf ("%lf", p+i);
p[i] = p[i] / 100;
sum += p[i] * i;
}
if (s == e)
{
puts ("0.00");
continue;
}
//一开始向左,起点要变
if (d > 0) s = (n - s) % n;
if (!bfs (s))
{
puts ("Impossible !");
continue;
}
equ = var = k;
Gauss ();
printf ("%.2f\n", x[has[s]]);
}
return 0;
}

HDU4418:Time travel(高斯消元+期望)的更多相关文章

  1. HDU2262;Where is the canteen(高斯消元+期望)

    传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...

  2. [ACM] hdu 4418 Time travel (高斯消元求期望)

    Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...

  3. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  4. BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...

  5. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  6. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

  7. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)

    传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...

  8. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  9. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

随机推荐

  1. Rem 字体设置学习一

    JS方法动态计算根元素的字体大小: [淘宝首页:m.taobao.com] (function (doc, win) { var docEl = doc.documentElement, resize ...

  2. 最短路——Dijkstra算法

    模板 水模板ing #include <cstdio> #include <cstring> #include <algorithm> #include <i ...

  3. S5700&S5710 产品文档 : 配置

    http://support.huawei.com/hdx/hdx.do?docid=SC0000699332&lang=zh&path=PBI1-C103367%2FPBI1-C10 ...

  4. mysql中如何查询最近24小时、top n查询

    MySQL中如何查询最近24小时. where visittime >= NOW() - interval 1 hour; 昨天. where visittime between CURDATE ...

  5. [Javascript] Use JavaScript's for-in Loop on Objects with Prototypes

    Loops can behave differently when objects have chained prototype objects. Let's see the difference w ...

  6. [Bash] View Files and Folders in Bash

    Sometimes when working at the command line, it can be handy to view a file’s contents right in the t ...

  7. mac下配置phonegap(cordova)5.1.1开发环境

    眼下最新的cordova的版本号是5.1.1,在mac下搭建开发环境过程例如以下: 1)首先安装NODEJS环境 进入官网: http://nodejs.org/ .眼下的版本号: v0.12.7 点 ...

  8. 【Mongodb教程 第十课 】MongoDB 备份

    MongoDB 数据转储 创建备份MongoDB中的数据库,应该使用mongodump命令.此命令将服务器的所有数据转储到转储目录.有许多可供选择,通过它可以限制的数据量或创建备份您的远程服务器. 语 ...

  9. STL vector的介绍(1)

    尝试下翻译STL里面的一些easy和算法.四级过了.六级刚考.顺便练练自己的英语水平.翻译的不好的地方请大神多多不吝赐教哈.方便我改正. 原来均来自:http://www.cplusplus.com/ ...

  10. 计算机体系结构的铁律(iron law)

    计算机体系结构的铁律可由下面公式来描写叙述: 从Programmer的角度来看,处理器的性能就是运行程序的耗费的时间.所以用Time/Program来刻画处理器性能.而这个简单的公式背后是有很丰富的内 ...