一般图最大匹配带花树:

建图后,计算最大匹配数.

假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点。后手不论怎么走,都必定走到一个被匹配的点上。先手就能够顺着这个交错路走下去,最后一定是后手没有路可走,由于假设还有路可走,这一条交错路,就是一个增广路,必定有更大的匹配.

Game


Time Limit: 1 Second      Memory Limit: 32768 KB


Fire and Lam are addicted to the game of Go recently. Go is one of the oldest board games. It is rich in strategy despite its simple rules. The game is played by two players who alternately
place black and white stones on the vacant intersections of a grid of 19*19 lines. Once placed on the board, stones cannot be moved elsewhere, unless they are surrounded and captured by the opponent's stones. The object of the game is to control (surround)
a larger portion of the board than the opponent.

Fire thinks it is too easy for him to beat Lam. So he thinks out a new game to play on the board. There are some stones on the board, and we don't need to care about the stones' color
in this new game. Fire and Lam take turns to remove one of the stones still on the board. But the Manhattan distance between the removed stone and the opponent's last removed stone must not be greater than L. And the one who can't remove any stone
loses the game.

The Manhattan distance between (xi, yi) and (xj, yj) is |xi - xj| + |yi - yj|.

To show the performance of grace, Fire lets Lam play first. In the beginning of the game, Lam can choose to remove any stone on the board.

Fire and Lam are clever, so they both use the best strategy to play this game. Now, Fire wants to know whether he can make sure to win the game.

Input

There are multiple cases (no more than 30).

In each case, the first line is a positive integer n (n <= 361) which indicates the number of stones left on the board. Following are n lines, each contains
a pair of integers x andy (0 <= xy <= 18), which indicate a stone's location. All pairs are distinct. The last line is an integer L (1 <= L <= 36).

There is a blank line between cases.

Ouput

If Fire can win the game, output "YES"; otherwise, just output "NO".

Sample Input

2
0 2
2 0
2 2
0 2
2 0
4

Sample Output

NO
YES

Author: LIN, Yue

Source: The 10th Zhejiang University Programming Contest

problemId=3726" style="color:blue; text-decoration:none">Submit    Status

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue> using namespace std; const int maxn=500; /*******************************************/ struct Edge
{
int to,next;
}edge[maxn*maxn]; int Adj[maxn],Size; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void add_edge(int u,int v)
{
edge[Size].to=v; edge[Size].next=Adj[u]; Adj[u]=Size++;
} /*******************************************/ int n;
int Match[maxn];
int Start,Finish,NewBase;
int Father[maxn],Base[maxn];
bool InQueue[maxn],InPath[maxn],InBlossom[maxn];
int Count;
queue<int> q; int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u=Base[u];
InPath[u]=true;
if(u==Start) break;
u=Father[Match[u]];
}
while(true)
{
v=Base[v];
if(InPath[v]) break;
v=Father[Match[v]];
}
return v;
} void ResetTrace(int u)
{
int v;
while(Base[u]!=NewBase)
{
v=Match[u];
InBlossom[Base[u]]=InBlossom[Base[v]]=true;
u=Father[v];
if(Base[u]!=NewBase) Father[u]=v;
}
} void BlossomContract(int u,int v)
{
NewBase=FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u); ResetTrace(v);
if(Base[u]!=NewBase) Father[u]=v;
if(Base[v]!=NewBase) Father[v]=u;
for(int tu=1;tu<=n;tu++)
{
if(InBlossom[Base[tu]])
{
Base[tu]=NewBase;
if(!InQueue[tu])
{
q.push(tu);
InQueue[tu]=true;
}
}
}
} void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,0,sizeof(Father));
for(int i=1;i<=n;i++) Base[i]=i;
while(!q.empty()) q.pop();
q.push(Start); InQueue[Start]=true;
Finish=0; while(!q.empty())
{
int u=q.front(); InQueue[u]=false;
q.pop();
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(Base[u]!=Base[v]&&Match[u]!=v)
{
if(v==Start||(Match[v]>0&&Father[Match[v]]>0))
BlossomContract(u,v);
else if(Father[v]==0)
{
Father[v]=u;
if(Match[v]>0)
{
q.push(Match[v]);
InQueue[Match[v]]=true;
}
else
{
Finish=v;
return ;
}
}
}
}
}
} void AugmentPath()
{
int u,v,w;
u=Finish;
while(u>0)
{
v=Father[u];
w=Match[v];
Match[v]=u;
Match[u]=v;
u=w;
}
} void Edmonds()
{
memset(Match,0,sizeof(Match));
for(int u=1;u<=n;u++)
{
if(Match[u]==0)
{
Start=u;
FindAugmentingPath();
if(Finish>0) AugmentPath();
}
}
} struct Point
{
int x,y,id;
}p[maxn]; int L; int MHD(Point a,Point b)
{
return abs(a.x-b.x)+abs(a.y-b.y);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
p[i]=(Point){x,y,i};
}
scanf("%d",&L);
init();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) continue;
if(MHD(p[i],p[j])<=L)
{
add_edge(i,j);
add_edge(j,i);
}
}
}
Edmonds();
Count=0;
for(int i=1;i<=n;i++)
{
if(Match[i]) Count++;
else break;
}
//cout<<"--> "<<Count<<endl;
if(Count==n) puts("YES");
else puts("NO");
}
return 0;
}

ZOJ 3316 Game 一般图最大匹配带花树的更多相关文章

  1. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  2. 【learning】一般图最大匹配——带花树

    问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...

  3. UOJ #79 一般图最大匹配 带花树

    http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...

  4. 【UOJ 79】 一般图最大匹配 (✿带花树开花)

    从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...

  5. 【UOJ #79】一般图最大匹配 带花树模板

    http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...

  6. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  7. URAL 1099. Work Scheduling (一般图匹配带花树)

    1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...

  8. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  9. URAL1099 Work Scheduling —— 一般图匹配带花树

    题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...

随机推荐

  1. caffe proto

    所在目录为: /src/caffe/proto 在caffe.proto中定义了很多结构化数据,比如LayerParameter.Datum.NetParameter.SolverParameter. ...

  2. h lib dll文件相关部分

    参考:https://www.cnblogs.com/azbane/p/7364060.html 只对其中自己用得到的重点做了个笔记. 1..h头文件是编译时必须的,lib是链接时需要的,dll是运行 ...

  3. 【Java】Class文件编译的版本号与JDK版本号的对应关系

    查看方式 使用文本编辑器EmEditor以16进制方式打开.class文件 图中红框中的代表版本号52.0 次版本号:00 00   (小数点后面的部分) 主版本号:00 34   (小数点前面的部分 ...

  4. RPM Package Manager

    本文大部分内容来自鸟哥的Linux私房菜,并且由作者根据自己的学习情况做了一些更改,鸟哥原文链接 1. 程序的安装方式 源代码安装:利用厂商释出的Tarball 来进行软件的安装,每次安装程序都需要检 ...

  5. utf-8 下汉字为什么需要三个字节

    Unicode 十六进制码点范围 --> UTF-8 二进制0000 0000 - 0000 007F --> 0xxxxxxx 0000 0080 - 0000 07FF --> ...

  6. while循环处理列表和字典

    一.在列表之间移动元素 假设有一个列表,里面存放的是网站新注册但没有验证的用户,验证这些用户后,如何将它们移动到另一个已验证用户列表中呢? 其中一种方法是使用while循环,在验证用户的同时,将其从未 ...

  7. [MVC]Controller

    1,控制器中所有的动作方法必须声明为public,如声明为private或protected,将不被视为动作方法. 如果将Action声明为private,或者是添加[NonAction]属性,则不对 ...

  8. ubuntu安装远程桌面连接工具

    1. 安装xrdp sudo apt-get -y install xrdp   2.安装vnc4server sudo apt-get install vnc4server   3.安装xubunt ...

  9. HDU-1041-Computer Transformation,大数递推,水过~~

                                                                                  Computer Transformatio ...

  10. Go内建变量类型

    package main import ( "math/cmplx" "fmt" "math" ) //内建变量类型: // bool , ...