ZOJ 3316 Game 一般图最大匹配带花树
一般图最大匹配带花树:
建图后,计算最大匹配数.
假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点。后手不论怎么走,都必定走到一个被匹配的点上。先手就能够顺着这个交错路走下去,最后一定是后手没有路可走,由于假设还有路可走,这一条交错路,就是一个增广路,必定有更大的匹配.
Game
Time Limit: 1 Second Memory Limit: 32768 KB
Fire and Lam are addicted to the game of Go recently. Go is one of the oldest board games. It is rich in strategy despite its simple rules. The game is played by two players who alternately
place black and white stones on the vacant intersections of a grid of 19*19 lines. Once placed on the board, stones cannot be moved elsewhere, unless they are surrounded and captured by the opponent's stones. The object of the game is to control (surround)
a larger portion of the board than the opponent.

Fire thinks it is too easy for him to beat Lam. So he thinks out a new game to play on the board. There are some stones on the board, and we don't need to care about the stones' color
in this new game. Fire and Lam take turns to remove one of the stones still on the board. But the Manhattan distance between the removed stone and the opponent's last removed stone must not be greater than L. And the one who can't remove any stone
loses the game.
The Manhattan distance between (xi, yi) and (xj, yj) is |xi - xj| + |yi - yj|.
To show the performance of grace, Fire lets Lam play first. In the beginning of the game, Lam can choose to remove any stone on the board.
Fire and Lam are clever, so they both use the best strategy to play this game. Now, Fire wants to know whether he can make sure to win the game.
Input
There are multiple cases (no more than 30).
In each case, the first line is a positive integer n (n <= 361) which indicates the number of stones left on the board. Following are n lines, each contains
a pair of integers x andy (0 <= x, y <= 18), which indicate a stone's location. All pairs are distinct. The last line is an integer L (1 <= L <= 36).
There is a blank line between cases.
Ouput
If Fire can win the game, output "YES"; otherwise, just output "NO".
Sample Input
2
0 2
2 0
2 2
0 2
2 0
4
Sample Output
NO
YES
Author: LIN, Yue
Source: The 10th Zhejiang University Programming Contest
problemId=3726" style="color:blue; text-decoration:none">Submit
Status#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue> using namespace std; const int maxn=500; /*******************************************/ struct Edge
{
int to,next;
}edge[maxn*maxn]; int Adj[maxn],Size; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void add_edge(int u,int v)
{
edge[Size].to=v; edge[Size].next=Adj[u]; Adj[u]=Size++;
} /*******************************************/ int n;
int Match[maxn];
int Start,Finish,NewBase;
int Father[maxn],Base[maxn];
bool InQueue[maxn],InPath[maxn],InBlossom[maxn];
int Count;
queue<int> q; int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u=Base[u];
InPath[u]=true;
if(u==Start) break;
u=Father[Match[u]];
}
while(true)
{
v=Base[v];
if(InPath[v]) break;
v=Father[Match[v]];
}
return v;
} void ResetTrace(int u)
{
int v;
while(Base[u]!=NewBase)
{
v=Match[u];
InBlossom[Base[u]]=InBlossom[Base[v]]=true;
u=Father[v];
if(Base[u]!=NewBase) Father[u]=v;
}
} void BlossomContract(int u,int v)
{
NewBase=FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u); ResetTrace(v);
if(Base[u]!=NewBase) Father[u]=v;
if(Base[v]!=NewBase) Father[v]=u;
for(int tu=1;tu<=n;tu++)
{
if(InBlossom[Base[tu]])
{
Base[tu]=NewBase;
if(!InQueue[tu])
{
q.push(tu);
InQueue[tu]=true;
}
}
}
} void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,0,sizeof(Father));
for(int i=1;i<=n;i++) Base[i]=i;
while(!q.empty()) q.pop();
q.push(Start); InQueue[Start]=true;
Finish=0; while(!q.empty())
{
int u=q.front(); InQueue[u]=false;
q.pop();
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(Base[u]!=Base[v]&&Match[u]!=v)
{
if(v==Start||(Match[v]>0&&Father[Match[v]]>0))
BlossomContract(u,v);
else if(Father[v]==0)
{
Father[v]=u;
if(Match[v]>0)
{
q.push(Match[v]);
InQueue[Match[v]]=true;
}
else
{
Finish=v;
return ;
}
}
}
}
}
} void AugmentPath()
{
int u,v,w;
u=Finish;
while(u>0)
{
v=Father[u];
w=Match[v];
Match[v]=u;
Match[u]=v;
u=w;
}
} void Edmonds()
{
memset(Match,0,sizeof(Match));
for(int u=1;u<=n;u++)
{
if(Match[u]==0)
{
Start=u;
FindAugmentingPath();
if(Finish>0) AugmentPath();
}
}
} struct Point
{
int x,y,id;
}p[maxn]; int L; int MHD(Point a,Point b)
{
return abs(a.x-b.x)+abs(a.y-b.y);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
p[i]=(Point){x,y,i};
}
scanf("%d",&L);
init();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) continue;
if(MHD(p[i],p[j])<=L)
{
add_edge(i,j);
add_edge(j,i);
}
}
}
Edmonds();
Count=0;
for(int i=1;i<=n;i++)
{
if(Match[i]) Count++;
else break;
}
//cout<<"--> "<<Count<<endl;
if(Count==n) puts("YES");
else puts("NO");
}
return 0;
}
ZOJ 3316 Game 一般图最大匹配带花树的更多相关文章
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- UOJ #79 一般图最大匹配 带花树
http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...
- 【UOJ 79】 一般图最大匹配 (✿带花树开花)
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...
- 【UOJ #79】一般图最大匹配 带花树模板
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...
- kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...
- URAL 1099. Work Scheduling (一般图匹配带花树)
1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night gua ...
- HDU 4687 Boke and Tsukkomi (一般图匹配带花树)
Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Othe ...
- URAL1099 Work Scheduling —— 一般图匹配带花树
题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...
随机推荐
- Selenium3+python自动化008-操作浏览器基本方法
一.打开网站1.第一步:从selenium里面导入webdriver模块2.打开Firefox浏览器(Ie和Chrome对应下面的)3.打开百度网址二.页面刷新1.有时候页面操作后,数据可能没及时同步 ...
- JAVA用freemarker生成复杂Excel。(freemarker)
在生成Excel的时候,大多时候都是使用poi,jxl等进行的,但是对于复杂的Excel来说,这个工作量是非常的大的,而且,对于我这么懒的人来说,这是相当痛苦的一件事情,所以,我不得不找找有没有简单一 ...
- INFORMATION_SCHEMA InnoDB 表
INFORMATION_SCHEMA InnoDB Tables 本节提供InnoDB INFORMATION_SCHEMA表的表定义. 有关相关信息和示例,请参见"InnoDB INFOR ...
- (8) openssl rsautl(签名/验证签名/加解密文件)和openssl pkeyutl(文件的非对称加密)
rsautl是rsa的工具,相当于rsa.dgst的部分功能集合,可用于生成数字签名.验证数字签名.加密和解密文件. pkeyutl是非对称加密的通用工具,大体上和rsautl的用法差不多,所以此处只 ...
- Java:post请求
文章来源:https://www.cnblogs.com/hello-tl/p/9140870.html 0.post请求返回json import java.io.BufferedInputStre ...
- 记第一次面试的悲惨经历QAQ
面试岗位:测试开发 自我介绍 :根据介绍的内容,会问简历上涉及到的东西,主要是项目: 手写代码:给一个数组,求数组中所有数字拼接后能得到的最小数字.例:{3,32,312},输出312323. 关于计 ...
- 电源模块PCB设计
电源模块的PCB设计 电源电路是一个电子产品的重要组成部分,电源电路设计的好坏,直接牵连产品性能的好坏.我们电子产品的电源电路主要有线性电源和高频开关电源.从理论上讲,线性电源是用户需要多少电流,输入 ...
- httpclient调用webservice接口的方法实例
这几天在写webservice接口,其他的调用方式要生成客户端代码,比较麻烦,不够灵活,今天学习了一下httpclient调用ws的方式,感觉很实用,话不多说,上代码 http://testhcm.y ...
- python request包使用指西
request是Python的一个网络模块包,使用它可以快速写一些强大的爬虫脚本
- 79. could not initialize proxy - no Session 【从零开始学Spring Boot】
[原创文章,转载请注明出处] Spring与JPA结合时,如何解决懒加载no session or session was closed!!! 实际上Spring Boot是默认是打开支持sessio ...