【题目分析】

裸题直接做。

一个长度为n,颜色为m的环,本质不同的染色方案是多少。

数据范围比较小,直接做就好了。

【代码】

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define F(i,j,k) for (int i=j;i<=k;++i)
int gcd(int a,int b)
{return b==0?a:gcd(b,a%b);}
int n,c;
ll pow[50],ans;
int main()
{
while (scanf("%d%d",&c,&n)&&c&&n)
{
ans=0;
pow[0]=1;
F(i,1,n) pow[i]=pow[i-1]*c;
F(i,0,n-1) ans+=pow[gcd(i,n)];
if (n&1) ans+=n*pow[n/2+1];
else
{
ans+=n/2*pow[n/2];
ans+=n/2*pow[n/2+1];
}
ans/=2*n;
printf("%lld\n",ans);
}
}

  

POJ 2409 Let it Bead ——Burnside引理的更多相关文章

  1. POJ 2409 Let it Bead(polay计数)

    题目链接:http://poj.org/problem?id=2409 题意:给出一个长度为m的项链,每个珠子可以用n种颜色涂色.翻转和旋转后相同的算作一种.有多少种不同的项链? 思路: (1) 对于 ...

  2. POJ 2409 Let it Bead:置换群 Polya定理

    题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论 ...

  3. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

  4. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  5. poj 2409+2154+2888(Burnside定理)

    三道burnside入门题: Burnside定理主要理解置换群置换后每种不动点的个数,然后n种不动点的染色数总和/n为answer. 对于旋转,旋转i个时不动点为gcd(n,i). 传送门:poj ...

  6. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  7. poj 1286 Necklace of Beads &amp; poj 2409 Let it Bead(初涉polya定理)

    http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...

  8. poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>

    链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...

  9. poj 2409 Let it Bead【polya定理+burnside引理】

    两种置换 旋转:有n种,分别是旋转1个2个--n个,旋转i的循环节数位gcd(i,n) 翻转:分奇偶,对于奇数个,只有一个珠子对一条边的中点,循环节数为n/2+1:对于偶数个,有珠子对珠子和边对边,循 ...

随机推荐

  1. CSS布局之-强大的负边距

    css中的负边距(negative margin)是布局中的一个常用技巧,只要运用得合理常常会有意想不到的效果.很多特殊的css布局方法都依赖于负边距,所以掌握它的用法对于前端的同学来说,那是必须的. ...

  2. shell中的-z

    -z 字符串为"null",即是指字符串长度为零.

  3. 你不知道的HTTP之HTTPS

    确保web安全的HTTPS HTTPS=HTTP+ 加密 + 认证 + 完整性保护 1.加密: 1)通信的加密 所谓互联网,是由能连通到全世界的网络组成的.无论世界哪个角 落的服务器在和客户端通信时, ...

  4. (转)SpringMVC学习(二)——SpringMVC架构及组件

    http://blog.csdn.net/yerenyuan_pku/article/details/72231385 相信大家通过前文的学习,已经对SpringMVC这个框架多少有些理解了.还记得上 ...

  5. UVA 10817 - Headmaster's Headache(三进制状压dp)

    题目:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=20&pag ...

  6. Vue+webpack+echarts+jQuery=demo

    需要的插件: "dependencies": { "bootstrap": "^3.3.7", "echarts": & ...

  7. iOS开发遇到的坑之一: 开发遇见如下错误:Undefined symbols for architecture arm64

    博客处女作,写得不好望谅解! “for architecture arm64”就是说没有支持arm64,在Build settings里architecture相关的几项需要配置正确 在最近升级coc ...

  8. C\C++对于字符串输入处理

    1.scanf scanf以%s格式符读入字符串,会以空格为结束,也就是无法将空格读入.如果换成%c就可以读入,但是无法一次性读入一整行字符. 2.fgets 显然,fgets是一个读取带空格字符串的 ...

  9. Linux内核——进程管理之CFS调度器(基于版本4.x)

    <奔跑吧linux内核>3.2笔记,不足之处还望大家批评指正 建议阅读博文https://www.cnblogs.com/openix/p/3262217.html理解linux cfs调 ...

  10. 如何把握好 transition 和 animation 的时序,创作描边按钮特效

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/mKdzZM 可交互视频教 ...