巴蜀1088 Antiprime数
Description
任务:编一个程序:
1、从ANT.IN中读入自然数n。
2、计算不大于n的最大Antiprime数。
3、将结果输出到ANT.OUT中。
Input
Output
Sample Input
Sample Output
Source
问题可以转化成求n以内约数最多的数,约数相同则取小的。
逆用唯一分解定理,从小到大枚举每个质因数的使用个数(由数据范围限定最多枚举到23),搜索答案。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int pri[]={,,,,,,,,,,};
LL ans=;
LL mx=;
LL n;
void dfs(LL now,LL res,int last_mx,int pos){
//当前累计值,当前累计因数个数,上个质因数使用次数,枚举位置
if(res>mx || (res==mx && now<ans)){
mx=res; ans=now;
}
if(pos==)return;
for(int cnt=;cnt<=last_mx;cnt++){
now*=pri[pos];
if(now>n)return;
dfs(now,res*(cnt+),cnt,pos+);
}
return;
}
int main(){
scanf("%lld",&n);
dfs(,,,);
printf("%lld\n",ans);
return ;
}
巴蜀1088 Antiprime数的更多相关文章
- [swustoj 373] Antiprime数
Antiprime数(0373) 问题描述 如果一个自然数n(n>=1),满足所有小于n的自然数(>=1)的约数个数都小于n的约数个数,则n是一个Antiprime数.譬如:1, 2, 4 ...
- COGS 693. [SDOI2005]Antiprime数 唯一分解定理逆用
693. Antiprime数 ★★ 输入文件:antip.in 输出文件:antip.out 简单对比 时间限制:1 s 内存限制:128 MB 如果一个自然数n(n>=1), ...
- Antiprime数-数论
题目描述 Description 如果一个自然数n满足:所有小于它的自然数的约数个数都小于n的约数个数,则称n是一个Antiprime数.譬如:1.2.4.5.12.24都是Antiprime数. ...
- 巴蜀2904 MMT数
Description FF博士最近在研究MMT数. 如果对于一个数n,存在gcd(n,x)<>1并且n mod x<>0 那么x叫做n的MMT数,显然这样的数可以有无限个. ...
- 2018.09.09 cogs693. Antiprime数(搜索)
传送门 看完题发现很sb. 前10个质数乘起来已经超出题目范围了. 因此只用搜索前几个质数每个的次数比较谁的因数的就行了. 代码: #include<iostream> #define l ...
- ACM-Antiprime数
问题描述: swust打不开,随便找了个博客.... 对于任何正整数x,起约数的个数记做g(x).例如g(1)=1,g(6)=4. 定义:如果某个正整数x满足:对于任意i(0<i<x) ...
- C2第六次作业解题报告
看过题解后如果觉得还算有用,请帮忙加点我所在团队博客访问量 http://www.cnblogs.com/newbe/ http://www.cnblogs.com/newbe/p/4069834.h ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- BZOJ 1088 扫雷Mine
今天做了几道BZOJ的题,发现统观题目时还是很多很多都不会的,不过还是有几道时可以作的,以后要慢慢加强,争取多做题 BZOJ 1088 扫雷 其实本人平常不大玩扫雷的,就算玩也不是很好,不过看n*2的 ...
随机推荐
- vue2.0的变化
1. 在每个组件模板,不在支持片段代码 组件中模板: 之前: <template> <h3>我是组件</h3><strong>我是加粗标签</st ...
- 清理数据库事务——SQL语句
清除流程内部的所有相关数据 eg1: declare @procedureTemp table ( [ProcedureCode] varchar(10) ) declare @ProcedureCo ...
- Mac电脑怎么显示隐藏文件、xcode清除缓存
1.删除Xcode中多余的证书provisioning profile 手动删除: Xcode6 provisioning profile path: ~/Library/MobileDevice/P ...
- EditorConfig文件
EditorConfig .editorconfig文件 在很多开源项目中,会出现这个文件,这个文件有何作用? editorconfig 帮助开发者的(编辑器和IDEs)定义和维护编程风格. 有些编辑 ...
- BZOJ 4016 最短路径树问题 最短路径树构造+点分治
题目: BZOJ4016最短路径树问题 分析: 大家都说这是一道强行拼出来的题,属于是两种算法的模板题. 我们用dijkstra算法算出1为源点的最短路数组,然后遍历一下建出最短路树. 之后就是裸的点 ...
- Luogu P2664 树上游戏 dfs+树上统计
题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...
- 使用Spring AOP实现业务依赖解耦
Spring IOC用于解决对象依赖之间的解耦,而Spring AOP则用于解决业务依赖之间的解耦: 统一在一个地方定义[通用功能],通过声明的方式定义这些通用的功能以何种[方式][织入]到某些[特定 ...
- 【Java_基础】Java中Native关键字的作用
本篇博文转载与:Java中Native关键字的作用
- CSS3-transform3D
CSS3 3D位移 在CSS3中3D位移主要包括两种函数translateZ()和translate3d().translate3d()函数使一个元素在三维空间移动.这种变形的特点是,使用三维向量的坐 ...
- windows终端输入pip install requests报错:Fatal error in launcher
emm今天群友发了个图,说他的pip报错,是这个问题 emmm这个问题我也不太懂,后来让他pip install requests这样操作,, 还是不管用,我寻思这个错咋回事,让他用 python ...