bzoj1225 [HNOI2001] 求正整数
1225: [HNOI2001] 求正整数
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 762 Solved: 313
[Submit][Status][Discuss]
Description
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。
Input
n(1≤n≤50000)
Output
m
Sample Input
Sample Output
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cfloat> using namespace std; int n,prime[] = {,,,,,,,,,,,,,,,,},tot = ;
double minn = DBL_MAX,llg[];
int res[],ans[],p[],len; void print()
{
len = p[] = ;
for (int i = ; i <= ; i++)
{
for (;ans[i] > ;ans[i]--)
{
for (int j = ; j <= len; j++)
p[j] *= prime[i];
for (int j = ; j <= len; j++)
{
p[j + ] += p[j] / ;
p[j] %= ;
}
if (p[len + ])
len++;
while (p[len] / != )
{
p[len + ] += p[len] / ;
p[len] %= ;
len++;
}
}
}
for (int i = len; i >= ; i--)
printf("%d",p[i]);
printf("\n");
} void dfs(double sum,int cnt,int x)
{
if (sum >= minn)
return;
if (cnt == )
{
minn = sum;
memset(ans,,sizeof(ans));
for (int i = ; i <= x - ; i++)
ans[i] = res[i];
return;
}
if (x > )
return;
for (int i = ; (i + ) * (i + ) <= cnt; i++)
if (cnt % (i + ) == )
{
res[x] = i;
dfs(sum + i * llg[x],cnt / (i + ),x + );
if ((i +) * (i + ) != cnt)
{
res[x] = cnt / (i + ) - ;
dfs(sum + (cnt / (i + ) - ) * llg[x],i + ,x + );
}
}
} int main()
{
scanf("%d",&n);
for (int i = ; i <= ; i++)
llg[i] = log(prime[i]);
dfs(,n,);
print(); return ;
}
bzoj1225 [HNOI2001] 求正整数的更多相关文章
- 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数
// 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...
- BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )
15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...
- luogu P1128 [HNOI2001]求正整数 dp 高精度
LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...
- 【BZOJ1225】求正整数(数论)
题意:对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. n<=50000 思路:记得以前好像看的是maigo的题解 n即为将m分解为质数幂次的乘积后的次数+1之积 经检验只需要 ...
- 【BZOJ】1225: [HNOI2001] 求正整数
http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数
题意:给定n求,有n个因子的最小正整数. 题解:水题,zcr都会,我就不说什么了. 因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子, (1+p1 ...
- [HNOI2001] 求正整数 - 背包dp,数论
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...
- P1128 [HNOI2001]求正整数
传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...
随机推荐
- Azure 项目构建 – 部署 Jenkins 服务器以实现持续集成(CI)
通过完整流程详细介绍了如何通过 Azure 虚拟机.虚拟网络等服务在 Azure 平台上快速搭建 Jenkins 服务器. 此系列的全部课程 https://school.azure.cn/curri ...
- sql语句执行碰到的问题
问题:传递给 LEFT 或 SUBSTRING 函数的长度参数无效 原因:在LEFT或SUBSTRING 中计算出来的长度是负数导致的 解决方法: 1)逐个排查法,2)先把语句执行一下,查看中断的地 ...
- 推荐一个yaml文件转json文件的在线工具
YAML的全称是YAML Ain't Markup Language,是一种简洁的非标记语言,以数据为中心,使用空白,缩进,和分行组织数据,从而使得表示更加简洁易读. YAML如今广泛应用于微服务开发 ...
- HTML5资源汇总(更新游戏引擎cocos2d-html5)
我也是现学现用,想了解的可以看看效果,想知道实现的也有源码 http://cocos2d-html5.org Cocos2d-HTML5 API和Cocos2d-x一致,同样的代码可以支持cocos2 ...
- POJ2402 Palindrome Numbers第K个回文数——找规律
问题 给一个数k,给出第k个回文数 链接 题解 打表找规律,详见https://www.cnblogs.com/lfri/p/10459982.html,差别仅在于这里从1数起. AC代码 #inc ...
- uva12264 Risk
最小值最大,就二分判断. map[i] = '0'+map[i];这样更方便 每个点拆成i,i’, S连i,cap为a[i],i’连T,cap为1(保证至少剩一个)或mid. i,i’ ,a[i] ...
- PHP的PDF扩展库TCPDF将中文字体设置为内嵌字体的方法
1. 下载要设置的字体,如名为simfang.ttf,放在./vendor/tecnickcom/tcpdf/tools目录中 2.在tools目录中按住shift,点击鼠标右键,点击“在此处打开命令 ...
- ios坐标系统
在写程序的时候发现,iOS下的坐标.位置很容易弄乱,特别是在不同的坐标系统中,必须完成弄明白一些概念才能做相应的变化,例如CoreImage和UIView的坐标系统就截然不同,一个是以屏幕的左上角为原 ...
- jquery html5 实现placeholder 兼容password ie6
<style type="text/css"> /* 设置提示文字颜色 */ ::-webkit-input-placeholder { color: #838383; ...
- Windows 10 Mac 为Vs Code配置C/C++环境
2019-06-10 更新: 加上Mac版本的Vscode配置文件 0.前言 实现效果:右键一键编译运行C/C++文件 Vs code的代码效果很好看,也很轻量,所以想为Vs Code配置C/C++环 ...