bzoj1225 [HNOI2001] 求正整数
1225: [HNOI2001] 求正整数
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 762 Solved: 313
[Submit][Status][Discuss]
Description
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。
Input
n(1≤n≤50000)
Output
m
Sample Input
Sample Output
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cfloat> using namespace std; int n,prime[] = {,,,,,,,,,,,,,,,,},tot = ;
double minn = DBL_MAX,llg[];
int res[],ans[],p[],len; void print()
{
len = p[] = ;
for (int i = ; i <= ; i++)
{
for (;ans[i] > ;ans[i]--)
{
for (int j = ; j <= len; j++)
p[j] *= prime[i];
for (int j = ; j <= len; j++)
{
p[j + ] += p[j] / ;
p[j] %= ;
}
if (p[len + ])
len++;
while (p[len] / != )
{
p[len + ] += p[len] / ;
p[len] %= ;
len++;
}
}
}
for (int i = len; i >= ; i--)
printf("%d",p[i]);
printf("\n");
} void dfs(double sum,int cnt,int x)
{
if (sum >= minn)
return;
if (cnt == )
{
minn = sum;
memset(ans,,sizeof(ans));
for (int i = ; i <= x - ; i++)
ans[i] = res[i];
return;
}
if (x > )
return;
for (int i = ; (i + ) * (i + ) <= cnt; i++)
if (cnt % (i + ) == )
{
res[x] = i;
dfs(sum + i * llg[x],cnt / (i + ),x + );
if ((i +) * (i + ) != cnt)
{
res[x] = cnt / (i + ) - ;
dfs(sum + (cnt / (i + ) - ) * llg[x],i + ,x + );
}
}
} int main()
{
scanf("%d",&n);
for (int i = ; i <= ; i++)
llg[i] = log(prime[i]);
dfs(,n,);
print(); return ;
}
bzoj1225 [HNOI2001] 求正整数的更多相关文章
- 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数
// 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...
- BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )
15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...
- luogu P1128 [HNOI2001]求正整数 dp 高精度
LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...
- 【BZOJ1225】求正整数(数论)
题意:对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. n<=50000 思路:记得以前好像看的是maigo的题解 n即为将m分解为质数幂次的乘积后的次数+1之积 经检验只需要 ...
- 【BZOJ】1225: [HNOI2001] 求正整数
http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数
题意:给定n求,有n个因子的最小正整数. 题解:水题,zcr都会,我就不说什么了. 因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子, (1+p1 ...
- [HNOI2001] 求正整数 - 背包dp,数论
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...
- P1128 [HNOI2001]求正整数
传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...
随机推荐
- UVA 10817 - Headmaster's Headache(三进制状压dp)
题目:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=20&pag ...
- canvas 在视频中的用法
<!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...
- urllib基础-利用网站结构爬取网页-百度搜索
有的时候爬取网页,可以利用网站额结构特点爬取网页 在百度搜索框中输入搜索内容,单击搜索,浏览器会发送一个带有参数的url请求.尝试删除其中的一些参数,只剩下wd这个参数.发现wd是搜索内容.这样程序可 ...
- WINDOWS-API:API函数大全
操作系统除了协调应用程序的执行.内存分配.系统资源管理外,同时也是一个很大的服务中心,调用这个服务中心的各种服务(每一种服务是一个函数),可以帮肋应用程序达到开启视窗.描绘图形.使用周边设备的目的,由 ...
- a标签点击后更改颜色
function choose(id){ document.getElementById("typeid").value = id; //var infoa=document.ge ...
- bootstrap历练实例: 垂直胶囊式的导航菜单
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- shell脚本,每5个字符之间插入"|",行末不插入“|”。
文本aaaaabbbbbcccccdddd eeeeefffffkkkkkvvvv nnnnnggggg 希望得到的结果如下: aaaaa|bbbbb|ccccc|dddd eeeee|fffff|k ...
- ios面试题(三)
4.写一个setter方法用于完成@property (nonatomic,retain)NSString *name,写一个setter方法用于完成@property(nonatomic,copy) ...
- mysql中常用函数简介(不定时更新)
常用函数version() 显示当前数据库版本database() 返回当前数据库名称user() 返回当前登录用户名inet_aton(IP) 返回IP地址的数值形式,为IP地址的数学计算做准备in ...
- Linux中文件压缩与解压
压缩与解压 compress 文件名 1 -v //详细信息 2 3 -d //等于 uncompress 默认只识别 .Z 如果使用别的后缀,会导致不识别,解压缩失败.也可以使用 -d -c 压缩包 ...