P1373 小a和uim之大逃离 (动态规划)
题目背景
小a和uim来到雨林中探险。突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声。刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发、青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”。小a和他的小伙伴都惊呆了!
题目描述
瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!
现在他想知道他们都能活下来有多少种方法。
输入输出格式
输入格式:
第一行,三个空格隔开的整数n,m,k
接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。
输出格式:
一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。
输入输出样例
2 2 3
1 1
1 1
4
说明
【题目来源】
lzn改编
【样例解释】
样例解释:四种方案是:(1,1)->(1,2),(1,1)->(2,1),(1,2)->(2,2),(2,1)->(2,2)。
【数据范围】
对于20%的数据,n,m<=10,k<=2
对于50%的数据,n,m<=100,k<=5
对于100%的数据,n,m<=800,1<=k<=15
Solution
关于这道题,其实状态一看数据范围就出来了.
f[ i ] [ j ][ k ] 或者再多加一维.
但是在 k 这维上我思考了很久...
1. 表示当前以这个点为起点然后最终合法状态为k ?
很显然这样一点都不好更新,这样子的话 c数组就很难起作用了.
2. 表示当前这个点为起点,再加一维,表示是小a还是uim 然后可以达到k 的方案数?
一开始想了想这样发现其实根本不满足无后效性. 当前这个点为起点可以到达的方案数可以求出来但是这些路径需要在一条路上才可以更新.
所以,最后面还是想了很久.发现可做的是---差值...
状态f 表示 i,j 这个格子以小a->0 或 uim->1 差值为k的方案数.
注意 差值是 小a的 - uim的
于是有前导状态:
f[i-1][j][k][1]
f[i][j-1][k][0]
f[i-1][j][k][1]
f[i][j-1][k][0]
我是真的蠢,一开始硬是没有想到差值这一方面.
最后面将每一个点差值为0的方案数求和即可.
代码
#include<bits/stdc++.h>
using namespace std;
int f[][][][];
int c[][],n,m,k,ans;
const int mo=;
int main()
{
scanf("%d%d%d",&n,&m,&k);++k;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&c[i][j]);
f[i][j][c[i][j]%k][]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int h=;h<=k;h++)
{
f[i][j][h][]=(f[i][j][h][]+f[i-][j][(h-c[i][j]+k)%k][])%mo;
f[i][j][h][]=(f[i][j][h][]+f[i][j-][(h-c[i][j]+k)%k][])%mo;
f[i][j][h][]=(f[i][j][h][]+f[i-][j][(h+c[i][j])%k][])%mo;
f[i][j][h][]=(f[i][j][h][]+f[i][j-][(h+c[i][j])%k][])%mo;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
ans=(ans+f[i][j][][])%mo;
cout<<ans<<endl;
return ;
}
P1373 小a和uim之大逃离 (动态规划)的更多相关文章
- 洛古 P1373 小a和uim之大逃离
P1373 小a和uim之大逃离 题目提供者lzn 标签 动态规划 洛谷原创 难度 提高+/省选- 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电 ...
- 洛谷 P1373 小a和uim之大逃离
2016-05-30 12:31:59 题目链接: P1373 小a和uim之大逃离 题目大意: 一个N*M的带权矩阵,以任意起点开始向右或者向下走,使得奇数步所得权值和与偶数步所得权值和关于K的余数 ...
- 洛谷P1373 小a和uim之大逃离
P1373 小a和uim之大逃离 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从 ...
- 【题解】 P1373 小a和uim之大逃离
题解 P1373 小a和uim之大逃离 传送门 一道dp好题 乍看此题,感觉要这样设计: \(dp(x)(y)(mod_{a})(mod_{uim})(0/1)\) , 但是我上午考试就MLE了,赶紧 ...
- 【题解】P1373 小a和uim之大逃离
[题解]P1373 小a和uim之大逃离 考虑到可能会MLE,考虑状态压缩一下 由于只要得到他们的差就行了,所以直接少记录一维就好了 \(dp(i,j,r,1/0)\)表示在\(i,j\)点,当前ui ...
- 洛谷P1373 小a和uim之大逃离[背包DP]
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
- 洛谷 P1373 小a和uim之大逃离 Label:dp 不会
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
- P1373 小a和uim之大逃离
转自:http://www.cnblogs.com/CtsNevermore/p/6028138.html 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一 ...
- P1373 小a和uim之大逃离 二维dp
题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声.刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个 ...
随机推荐
- MySQL存储过程(更新指定字段的数据)
mysql存储过程示例: USE 数据库名称;DROP PROCEDURE IF EXISTS 数据库名称.存储过程名称;delimiter $$CREATE PROCEDURE 数据库名称.存储过程 ...
- codevs 1313 质因数分解
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 青铜 Bronze 题目描述 Description 已知正整数 n是两个不同的质数的乘积,试求出较大的那个质数 . 输入描述 I ...
- MySQL报错竞技赛
以下报错,我几乎没出过几个. ERROR 2 系统找不到文件: mysql-5.6.1X默认的配置文件是在C:\Program Files\MySQL\MySQL Server 5.6\my-defa ...
- SQLITE-更新查询
SQLite -更新查询 SQLite UPDATE查询用于修改现有表中的记录.您可以使用WHERE子句与更新查询更新选中的行,否则会被更新的所有行. 语法: UPDATE查询的WHERE子句的基本语 ...
- UVA 10003 cuting sticks 切木棍 (区间dp)
区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...
- codeforce Gym 100203I I WIN (网络流)
把'I'拆成容量为1一条边,一个入点一个出点,入点和相邻的'W'连一条容量为1的边,出点和相邻的'N'连一条容量为1,所有的'W'和源点连一条容量为1边,所有的'N'和汇点连一条容量为1的边,表示只能 ...
- Robot Framework(十三) 执行测试用例——创建输出
3.5创建输出 执行测试时会创建几个输出文件,并且所有这些文件都与测试结果有某种关联.本节讨论创建的输出,如何配置它们的创建位置以及如何微调其内容. 3.5.1不同的输出文件 输出目录 输出文件 日志 ...
- LeetCode 买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...
- 配置charles对手机进行抓包
1.如下打开charles配置信息:Help –> SSL Proxying –>Install Charles Root Certificate on a Mobile Device 2 ...
- 搭建pip源
1.安装pip软件 yum -y install python-pippip install --upgrade pippip install pip2pi 2.安装apacheyum -y inst ...