Portal

Description

初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作:

  • 连接边\((u,v)\),保证\(u,v\)不连通。
  • 询问有多少条简单路径经过边\((u,v)\)。

Solution

加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\)。

那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz[p]\)加上在辅助树上的实子树大小(子树大小也包括子树的虚子树和实子树)。当\(p=rt\)或\(p\)没有实子树时,\(siz[p]\)等于其原树上的子树大小。

如何维护\(isiz\)呢?只有当树的虚实划分变化时,\(isiz\)才会变化,也就是accesslinkaccess(p)中有一句ch[p][1]=q,说明\(ch[p][1]\)变为虚子树,\(q\)变为实子树,则isiz[p]+=siz[ch[p][1]]-siz[q]link(p,q)将\(p\)变为\(q\)的虚子树,因此\(q\)到\(q\)的根的\(isiz\)都要改变;因为不好实现所以makeRt(q)之后再连接,并isiz[q]+=siz[p]

询问时,只要makeRt(p),access(q),splay(q),此时\(q=rt\),\(p\)没有实子树,\(siz\)均正确。

时间复杂度\(O(Qlogn)\)。

Code

//[BJOI2014]大融合
#include <cstdio>
#include <algorithm>
using namespace std;
int read()
{
int x=0; char ch=getchar();
while(ch<'0'||'9'<ch) ch=getchar();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int const N=1e5+10;
int n,Q;
int fa[N],ch[N][2],siz[N],isiz[N]; bool rev[N];
int wh(int p) {return p==ch[fa[p]][1];}
int notRt(int p) {return p==ch[fa[p]][wh(p)];}
void rever(int p) {rev[p]^=1; swap(ch[p][0],ch[p][1]);}
void update(int p) {siz[p]=siz[ch[p][0]]+siz[ch[p][1]]+isiz[p]+1;}
void pushdw(int p) {if(rev[p]) rever(ch[p][0]),rever(ch[p][1]),rev[p]=false;}
void rotate(int p)
{
int q=fa[p],r=fa[q],w=wh(p);
fa[p]=r; if(notRt(q)) ch[r][wh(q)]=p;
fa[ch[q][w]=ch[p][w^1]]=q;
fa[ch[p][w^1]=q]=p;
update(q),update(p);
}
void pushdwRt(int p) {if(notRt(p)) pushdwRt(fa[p]); pushdw(p);}
void splay(int p)
{
pushdwRt(p);
for(int q=fa[p];notRt(p);rotate(p),q=fa[p]) if(notRt(q)) rotate(wh(p)^wh(q)?p:q);
}
void access(int p) {for(int q=0;p;q=p,p=fa[p]) splay(p),isiz[p]+=siz[ch[p][1]]-siz[q],ch[p][1]=q,update(p);}
void makeRt(int p) {access(p),splay(p),rever(p);}
void link(int p,int q) {makeRt(p),makeRt(q); fa[p]=q,isiz[q]+=siz[p]; update(q);}
long long query(int p,int q) {makeRt(p),access(q),splay(q); return (long long)siz[p]*(siz[q]-siz[p]);}
int main()
{
n=read(),Q=read();
for(int i=1;i<=n;i++) siz[i]=1;
for(int i=1;i<=Q;i++)
{
char opt[5]; scanf("%s",opt);
int u=read(),v=read();
if(opt[0]=='A') link(u,v);
else printf("%lld\n",query(u,v));
}
return 0;
}

P.S.

比Icefox短了20行!

洛谷P4219 - [BJOI2014]大融合的更多相关文章

  1. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  2. 洛谷P4219 [BJOI2014]大融合(LCT,Splay)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  3. 洛谷P4219 [BJOI2014]大融合(LCT)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  4. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  5. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  6. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  7. P4219 [BJOI2014]大融合

    传送门 动态维护森林 显然考虑 $LCT$ 但是发现询问求的是子树大小,比较不好搞 维护 $sum[x]$ 表示节点 $x$ 的子树大小,$si[x]$ 表示 $x$ 的子树中虚儿子的子树大小和 那么 ...

  8. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

  9. luogu P4219 [BJOI2014]大融合

    题解:原来LCT也能维护子树信息,我太Naive了 用LCT维护当前子树节点个数 具体做法维护siz[x]=当前Splay子树和指向当前Splay子树的虚边所代表的节点个数 auxsiz[x]=指向x ...

随机推荐

  1. Linux下用matplotlib画决策树

    1.trees = {'no surfacing': { 0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}} 2.从我的文件trees.txt里读的决策树, ...

  2. wamp无法进入phpMyAdmin或localhost的解决方法

    我用的是最新版的wampsever5,在win7(64位)下安装正常使用,没有无法进入phpMyAdmin的问题,但是我在虚拟机安装了win8(64位专业版),测试在win8下面的使用情况时,就有问题 ...

  3. 在 Windows 7 中禁用IPv6协议/IPv6隧道

    How to disable certain Internet Protocol version 6 (IPv6) components in Windows Vista, Windows 7 and ...

  4. mysql安装及基本概念

    1.mysql下载安装 在官网下载5.6版本(越老稳定性越好,现在公司一般都用5.6),选择windows,64bit .下载完解压看bin目录下是否有mysql·exe和mysqld.exe. 解压 ...

  5. PKU_campus_2017_K Lying Island

    思路: 题目链接http://poj.openjudge.cn/practice/C17K/ 状压dp.dp[i][j]表示第i - k人到第i人的状态为j的情况下前i人中最多有多少好人. 实现: # ...

  6. 关于setTimeout和Promise执行顺序问题

    先看一段代码 console.log('打印'+1); setTimeout(function(){ console.log('打印'+2); }) new Promise(function(reso ...

  7. virtualbox没有64位选项

    今天安装的virtualbox想安装一下sql server 测试一下 在安装系统的时候发现没有64位系统的选项,在网上找了一下 发现是  在BIOS里面有一个选项没有开启, 是 Intel virt ...

  8. 工作笔记:复制文件--从windows到ubuntu,再到fedora

    最近在测试跨平台类库,于是写了一些小程序. 当然主要利用vs进行主要的代码开发.eclipse进行linux的调试. 那么需要不时同步项目文件. 考虑到项目简单,所以没有使用svn. 1. 从wind ...

  9. 在2015年 开发一个 Web App 必须了解的那些事

    在过去的一年里,我在从头开始开发我的第一个重要的Web应用.经验教会了很多以前不知道的东西,特别是在安全性和用户体验方面. 值得一提的是,我上一次尝试构建的任何合理复杂性是在2005年.所以,在安全防 ...

  10. SQL数据库移植到ARM板步骤

    SQL作为一种存储数据的数据结构,具有体积小(能堵存储的数据多),容易移植等优点.例如,在Ubuntu或者ARM开发板上被大量应用.下面就简单说一下SQL移植到ARM板的步骤. 下载源代码 (记得在家 ...