HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8970 Accepted Submission(s): 3175

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题解:
问题:给出n个点及其坐标,求一棵生成树,使得A/B最大,其中A为生成树中某一条边(我们称之为魔法边)两端点的value和,B为生成树中除了上述边之外的其他边的权值之和。
看到了比率,还有生成树,第一反应是最优比率生成树。但再想想,最优比率生成树每次找答案都需要重置边权,而且好像也不能选定一条边之类的功能。总之,行不通。后来换了个角度思考,就柳暗花明了:
1.假定魔法边就是 u--v ,由于val[u]和val[v]是确定的,所以A/B中的A就已经确定了,为了使得A/B最大,我们要做的就是使得B最小,即使得除了魔法边之外的其他生成树边的权值和最小。所以我们就需要求出最小生成树。然后我们把u到v路径上边权最大的边删掉,然后用魔法边把u和v直接相连(两个操作之后仍然构成生成树)。这样,我们就求出了除了魔法边之外的其他生成树边的最小权值和。
2.有了上述结论,我们就可以用类似求次小生成树的方法,求出魔法边和A/B的最大值了。
代码如下:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e3+; double cost[MAXN][MAXN], lowc[MAXN], Max[MAXN][MAXN];
bool vis[MAXN], used[MAXN][MAXN];
int x[MAXN], y[MAXN], val[MAXN], pre[MAXN]; double Prim(int st, int n)
{
double ret = ;
memset(vis, false, sizeof(vis));
memset(used, false, sizeof(used));
memset(Max, , sizeof(Max)); for(int i = ; i<=n; i++)
lowc[i] = (i==st)?:INF;
pre[st] = st; for(int i = ; i<=n; i++)
{
int k;
double minn = INF;
for(int j = ; j<=n; j++)
if(!vis[j] && minn>lowc[j])
minn = lowc[k=j]; ret += lowc[k];
vis[k] = true;
used[pre[k]][k] = used[k][pre[k]] = true;
for(int j = ; j<=n; j++)
{
if(vis[j] && j!=k)
Max[j][k] = Max[k][j] = max(Max[j][pre[k]], lowc[k]);
if(!vis[j] && lowc[j]>cost[k][j])
{
lowc[j] = cost[k][j];
pre[j] = k;
}
}
}
return ret;
} double SMST(double sum, int n)
{
double ret = ;
for(int i = ; i<=n; i++)
for(int j = i+; j<=n; j++)
ret = max(ret, (val[i]+val[j])/(sum-Max[i][j]));
return ret;
} int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d",&n);
for(int i = ; i<=n; i++)
scanf("%d%d%d", &x[i], &y[i], &val[i]); for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
cost[i][j] = sqrt( 1.0*(x[i]-x[j])*(x[i]-x[j])+1.0*(y[i]-y[j])*(y[i]-y[j]) ); double sum = Prim(, n);
double ans = SMST(sum, n);
printf("%.2f\n", ans);
}
}
HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形的更多相关文章
- hdu4081 Qin Shi Huang's National Road System 次小生成树
先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏
Qin Shi Huang's National Road System ...
- HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)
题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- HDU4081 Qin Shi Huang's National Road System(次小生成树)
枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...
- HDU4081 Qin Shi Huang's National Road System
先求最小生成树 再遍历每一对顶点,如果该顶点之间的边属于最小生成树,则剪掉这对顶点在最小生成树里的最长路径 否则直接剪掉连接这对顶点的边~ 用prim算法求最小生成树最长路径的模板~ #include ...
随机推荐
- 利用Bitvise SSH Client设置二级代理
浏览器设置代理 chrome: 插件:SwitchyOmega 二级代理 软件:Bitvise SSH Client 友情连接:链接: https://pan.baidu.com/s/1fdth_TZ ...
- JustinMind
看到公司老板新请来的兼职产品经理,在讲项目功能设计图是,用的是justinmind这个工具,觉得很好奇,默默记下,或许以后能用到.下面是搜的简单的介绍,只是为了记住这个工具名字,现并没有想要深入探究这 ...
- Ural 1960 Palindromes and Super Abilities
Palindromes and Super Abilities Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged ...
- Java SSH框架系列:用户登录模块的设计与实现思路
1.简介用户登录模块,指的是根据用户输入的用户名和密码,对用户的身份进行验证等.如果用户没有登录,用户就无法访问其他的一些jsp页面,甚至是action都不能访问.二.简单设计及实现本程序是基于Jav ...
- redis哨兵模式配置
java对redis的读写 依赖包:jedis.jar maven下: <!-- https://mvnrepository.com/artifact/redis.clients/jedis - ...
- CritterAI与Recast Navigation寻路
版权声明:本文为博主吴欣伟原创文章,未经博主允许不得转载. 前言 这篇文章写于去年,由于工作需要,故写出这个研究文档,发现网上有关此寻路库的中文资源十分稀少,故发布出来与诸位共享交流,如文中有不对之处 ...
- Thinkphp5学习 Windows下的安装
方法一.通过官方网站直接下载: (1)下载地址:http://www.thinkphp.cn/down.html: (2)下载后,解压到web目录下: (3)访问:http://localhost/目 ...
- iOS 调用系统相册 相机 时,显示中文标题
解决手机语言已经设置显示中文 在调用系统相册.相机界面 时显示英文问题, 在 info.plist里面添加Localized resources can be mixed YES 表示是否允许应用程序 ...
- tomcat启动提示java.lang.UnsatisfiedLinkError: D:\soft\devTool\apache-tomcat-7.0.57\bin\tcnative-1.dll: C
https://blog.csdn.net/a274360781/article/details/52411984
- Windows如何在cmd命令行中查看、修改、删除与添加、设置环境变量
首先明确一点: 所有的在cmd命令行下对环境变量的修改只对当前窗口有效,不是永久性的修改.也就是说当关闭此cmd命令行窗口后,将不再起作用.永久性修改环境变量的方法有两种:一种是直接修改注册表(此种方 ...