题目链接:https://vjudge.net/problem/HDU-4081

Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8970    Accepted Submission(s): 3175

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 
Recommend
lcy

题解:

问题:给出n个点及其坐标,求一棵生成树,使得A/B最大,其中A为生成树中某一条边(我们称之为魔法边)两端点的value和,B为生成树中除了上述边之外的其他边的权值之和。

看到了比率,还有生成树,第一反应是最优比率生成树。但再想想,最优比率生成树每次找答案都需要重置边权,而且好像也不能选定一条边之类的功能。总之,行不通。后来换了个角度思考,就柳暗花明了:

1.假定魔法边就是 u--v ,由于val[u]和val[v]是确定的,所以A/B中的A就已经确定了,为了使得A/B最大,我们要做的就是使得B最小,即使得除了魔法边之外的其他生成树边的权值和最小。所以我们就需要求出最小生成树。然后我们把u到v路径上边权最大的边删掉,然后用魔法边把u和v直接相连(两个操作之后仍然构成生成树)。这样,我们就求出了除了魔法边之外的其他生成树边的最小权值和。

2.有了上述结论,我们就可以用类似求次小生成树的方法,求出魔法边和A/B的最大值了。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e3+; double cost[MAXN][MAXN], lowc[MAXN], Max[MAXN][MAXN];
bool vis[MAXN], used[MAXN][MAXN];
int x[MAXN], y[MAXN], val[MAXN], pre[MAXN]; double Prim(int st, int n)
{
double ret = ;
memset(vis, false, sizeof(vis));
memset(used, false, sizeof(used));
memset(Max, , sizeof(Max)); for(int i = ; i<=n; i++)
lowc[i] = (i==st)?:INF;
pre[st] = st; for(int i = ; i<=n; i++)
{
int k;
double minn = INF;
for(int j = ; j<=n; j++)
if(!vis[j] && minn>lowc[j])
minn = lowc[k=j]; ret += lowc[k];
vis[k] = true;
used[pre[k]][k] = used[k][pre[k]] = true;
for(int j = ; j<=n; j++)
{
if(vis[j] && j!=k)
Max[j][k] = Max[k][j] = max(Max[j][pre[k]], lowc[k]);
if(!vis[j] && lowc[j]>cost[k][j])
{
lowc[j] = cost[k][j];
pre[j] = k;
}
}
}
return ret;
} double SMST(double sum, int n)
{
double ret = ;
for(int i = ; i<=n; i++)
for(int j = i+; j<=n; j++)
ret = max(ret, (val[i]+val[j])/(sum-Max[i][j]));
return ret;
} int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d",&n);
for(int i = ; i<=n; i++)
scanf("%d%d%d", &x[i], &y[i], &val[i]); for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
cost[i][j] = sqrt( 1.0*(x[i]-x[j])*(x[i]-x[j])+1.0*(y[i]-y[j])*(y[i]-y[j]) ); double sum = Prim(, n);
double ans = SMST(sum, n);
printf("%.2f\n", ans);
}
}

HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形的更多相关文章

  1. hdu4081 Qin Shi Huang's National Road System 次小生成树

    先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...

  2. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  3. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  5. HDU4081 Qin Shi Huang's National Road System 2017-05-10 23:16 41人阅读 评论(0) 收藏

    Qin Shi Huang's National Road System                                                                 ...

  6. HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  7. hdu-4081 Qin Shi Huang's National Road System(最小生成树+bfs)

    题目链接: Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: ...

  8. HDU4081 Qin Shi Huang's National Road System(次小生成树)

    枚举作为magic road的边,然后求出A/B. A/B得在大概O(1)的时间复杂度求出,关键是B,B是包含magic road的最小生成树. 这么求得: 先在原图求MST,边总和记为s,顺便求出M ...

  9. HDU4081 Qin Shi Huang's National Road System

    先求最小生成树 再遍历每一对顶点,如果该顶点之间的边属于最小生成树,则剪掉这对顶点在最小生成树里的最长路径 否则直接剪掉连接这对顶点的边~ 用prim算法求最小生成树最长路径的模板~ #include ...

随机推荐

  1. luogu3380 【模板】二逼平衡树(树套树)

    #include <iostream> #include <cstdlib> #include <cstdio> #include <ctime> us ...

  2. zoj 1109 Language of FatMouse(map)

    Language of FatMouse Time Limit: 10 Seconds      Memory Limit: 32768 KB We all know that FatMouse do ...

  3. [luoguP2016] 战略游戏(DP)

    传送门 f[i][0]表示不选当前节点,当前节点的所有儿子节点都选f[i][1]表示选当前节点,儿子节点可选可不选 #include <cstdio> #include <cstri ...

  4. Washing Clothes(poj 3211)

    大体题意:有n件衣服,m种颜色,某人和他的女炮一起洗衣服,必须一种颜色洗完,才能洗另一种颜色,每件衣服都有时间,那个人洗都一样,问最少用时. poj万恶的C++和G++,害得我CE了三次 /* 背包啊 ...

  5. [NOIP1999] 普及组

    回文数 /*By SilverN*/ #include<algorithm> #include<iostream> #include<cstring> #inclu ...

  6. 【HDOJ6299】Balanced Sequence(贪心)

    题意:给定n个只有左右括号的序列,要求将它们重新排序使得匹配的括号对数最大. n<=1e5 s[i]<=1e5 sum s[i]<=5e6 思路: 先把每个串内部的匹配数量减去,剩下 ...

  7. Codeforces 513G1 513G2 Inversions problem [概率dp]

    转自九野:http://blog.csdn.net/qq574857122/article/details/43643135 题目链接:点击打开链接 题意: 给定n ,k 下面n个数表示有一个n的排列 ...

  8. 介绍 JSON的

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 易于人阅读和编写.同时也易于机器解析和生成. 它基于JavaScript Programming Lan ...

  9. python学习之-- assert断言

    assert 断言作用:断言是声明其布尔值必须为真的判定,如果发生异常就说明表达示为假.可以理解assert断言语句为raise-if-not,用来测试表示式,其返回值为假,就会触发异常.举例如下:a ...

  10. 分享一下然让显卡满血复活的小技巧(GTX)

    分享一下然让显卡满血复活的小技巧 笔者在玩大型游戏卡顿15fps下载如下操作 GTX950玩大型游戏都不会卡帧率稳定在30fps 下载GeForce Experience下载更新最新驱动 下载如下程序 ...