1、有两台机器A和B以及N个需要运行的任务。A机器有n种不同的模式,B机器有m种不同的模式,而每个任务都恰好在一台机器上运行。如果它在机器A上运行,则机器A需要设置为模式xi,如果它在机器B上运行,则机器B需要设置为模式yi。每台机器上的任务可以按照任意顺序执行,但是每台机器每转换一次模式需要重启一次。请合理为每个任务安排一台机器并合理安排顺序,使得机器重启次数尽量少。

2、最小点覆盖数 = 最大匹配数(结论。暂时不会证明。)

这道题主要在于转化:A机器的n种模式看成二分图的X集合,B机器的m种模式看成二分图的Y集合,每个任务看作一条边(即任务 i 看作边xi--yi),这样一来,所有的任务都变成了二分图中的边,然后求二分图的最小点覆盖数即可。

3、

/*
顶点编号从0开始的
邻接矩阵(匈牙利算法)
二分图匹配(匈牙利算法的DFS实现)(邻接矩阵形式)
初始化:g[][]两边顶点的划分情况
建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
g没有边相连则初始化为0
uN是匹配左边的顶点数,vN是匹配右边的顶点数
左边是X集,右边是Y集
调用:res=hungary();输出最大匹配数
优点:适用于稠密图,DFS找增广路,实现简洁易于理解
时间复杂度:O(VE)
*/
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; const int MAXN=;
int uN,vN;//u,v 的数目,使用前面必须赋值
int g[MAXN][MAXN];//邻接矩阵,记得初始化
int linker[MAXN];//linker[v]=u,表示v(右边Y集合中的点)连接到u(左边X集合中的点)
bool used[MAXN];
bool dfs(int u){//判断以X集合中的节点u为起点的增广路径是否存在
for(int v=;v<vN;v++)//枚举右边Y集合中的点
if(g[u][v]&&!used[v]){//搜索Y集合中所有与u相连的未访问点v
used[v]=true;//访问节点v
if(linker[v]==-||dfs(linker[v])){//是否存在增广路径
//若v是未盖点(linker[v]==-1表示没有与v相连的点,即v是未盖点),找到增广路径
//或者存在从与v相连的匹配点linker[v]出发的增广路径
linker[v]=u;//设定(u,v)为匹配边,v连接到u
return true;//返回找到增广路径
}
}
return false;
}
int hungary(){//返回最大匹配数(即最多的匹配边的条数)
int res=;//最大匹配数
memset(linker,-,sizeof(linker));//匹配边集初始化为空
for(int u=;u<uN;u++){//找X集合中的点的增广路
memset(used,false,sizeof(used));//设Y集合中的所有节点的未访问标志
if(dfs(u))res++;//找到增广路,匹配数(即匹配边的条数)+1
}
return res;
} int main(){
int n,m,k;
int i,ans;
int id,u,v;
while(~scanf("%d",&n)){
if(n==)break;
scanf("%d%d",&m,&k);
uN=n;//匹配左边的顶点数
vN=m;//匹配右边的顶点数
memset(g,,sizeof(g));//二分图的邻接矩阵初始化
for(i=;i<k;++i){
scanf("%d%d%d",&id,&u,&v);
if(u>&&v>)g[u][v]=;//u为0或v为0时不需要代价
}
ans=hungary();
printf("%d\n",ans);
}
}

HDU - 1150 Machine Schedule(最小点覆盖数)的更多相关文章

  1. hdu 1150 Machine Schedule(最小顶点覆盖)

    pid=1150">Machine Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  2. 匈牙利算法模板 hdu 1150 Machine Schedule(二分匹配)

    二分图:https://blog.csdn.net/c20180630/article/details/70175814 https://blog.csdn.net/flynn_curry/artic ...

  3. hdu 1150 Machine Schedule(二分匹配,简单匈牙利算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 Machine Schedule Time Limit: 2000/1000 MS (Java/ ...

  4. (step6.3.3)hdu 1150(Machine Schedule——二分图的最小点覆盖数)

    题目大意:第一行输入3个整数n,m,k.分别表示女生数(A机器数),男生数(B机器数),以及它们之间可能的组合(任务数). 在接下来的k行中,每行有3个整数c,a,b.表示任务c可以有机器A的a状态或 ...

  5. HDU 1150 Machine Schedule (二分图最小点覆盖)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两个机器a和b,分别有n个模式和m个模式.下面有k个任务,每个任务需要a的一个模式或者b的一个 ...

  6. HDU - 1150 Machine Schedule(二分匹配---最小点覆盖)

    题意:有两台机器A和B,A有n种工作模式(0~n-1),B有m种工作模式(0~m-1),两台机器的初始状态都是在工作模式0处.现在有k(0~k-1)个工作,(i,x,y)表示编号为i的工作可以通过机器 ...

  7. hdu 1150 Machine Schedule 最少点覆盖转化为最大匹配

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  8. hdu 1150 Machine Schedule 最少点覆盖

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  9. 二分图最大匹配(匈牙利算法)简介& Example hdu 1150 Machine Schedule

    二分图匹配(匈牙利算法) 1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数 König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知 ...

随机推荐

  1. CodeForces - 356A Knight Tournament

    http://codeforces.com/problemset/problem/356/A 首先理解题意 每次给出l 和r  在l - r之间还有资格的选手中得出一个胜者 暴力思路: 首先维护还有资 ...

  2. PAT (Advanced Level) 1034. Head of a Gang (30)

    简单DFS. #include<cstdio> #include<cstring> #include<cmath> #include<vector> # ...

  3. [洛谷U22158]策划体验(树上斜率优化)(二分最优决策)

    题目背景 OL不在,Clao又在肝少*前线,他虽然觉得这个游戏的地图很烦,但是他认为地图的难度还是太低了,习习中作为策划还不够FM,于是他自己YY了一种新的地图和新的机制: 题目描述 整个地图呈树形结 ...

  4. JVM内存区域(运行时数据区)划分

    前言: 我们每天都在编写Java代码,编译,执行.很多人已经知道Java源代码文件(.java后缀)会被Java编译器编译为字节码文件(.class后缀),然后由JVM中的类加载器加载各个类的字节码文 ...

  5. java类中资源加载顺序

    根据优先级别从高到低依次为:1.父类中的静态代码块(static);2.自身的静态代码块;3.父类中的的普通代码块;4.父类的构造方法;5.自身的普通代码块;6.自身的构造方法; 下面是一个测试 结果 ...

  6. Java中的数字

    以下内容引用自http://wiki.jikexueyuan.com/project/java/numbers.html: 通常情况下,当处理数字时,使用原始数据类型,如byte,int,long,d ...

  7. linux 解压zip文件

    linux 解压zip文件 学习了:https://blog.csdn.net/hbcui1984/article/details/1583796 unzip xx.zip

  8. db2安装配置备份还原

    环境 cenos 7.0 db2版本 db2_v101_linuxx64_expc.tar 安装db2 解压db2 tar zxvf db2_v101_linuxx64_expc.tar cd exp ...

  9. android POI搜索,附近搜索,周边搜索定位介绍

    POI搜索有三种方式.依据范围和检索词发起范围检索poiSearchInbounds.城市poi检索poiSearchInCity,周边检索poiSearchNearBy. 下以周边检索为例介绍怎样进 ...

  10. Dropbox电面面经

    他家电面有2轮,等待onsite.. . 电面1: 国人MM面的.这点感觉非常难得. 统计近期5分钟的点击量,实现hit和getHit两个函数.这题是他家高频题,我用deque实现的,hit的均摊时间 ...