Leetcode 301.删除无效的括号
删除无效的括号
删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果。
说明: 输入可能包含了除 ( 和 ) 以外的字符。
示例 1:
输入: "()())()"
输出: ["()()()", "(())()"]
示例 2:
输入: "(a)())()"
输出: ["(a)()()", "(a())()"]
示例 3:
输入: ")("
输出: [""]
Approach 1: Backtracking
Intuition
For this question, we are given an expression consisting of parentheses and there can be some misplaced or extra brackets in the expression that cause it to be invalid. An expression consisting of parentheses is considered valid only when every closing bracket has a corresponding opening bracket and vice versa.
This means if we start looking at each of the bracket from left to right, as soon as we encounter a closing bracket, there should be an unmatched opening bracket available to match it. Otherwise the expression would become invalid. The expression can also become invalid if the number of opening parentheses i.e. ( are more than the number of closing parentheses i.e. ).
Let us look at an invalid expression and all the possible valid expressions that can be formed from it by removing some of the brackets. There is no restriction on which parentheses we can remove. We simply have to make the expression valid.
The only condition is that we should be removing the minimum number of brackets to make an invalid expression, valid. If this condition was not present, we could potentially remove most of the brackets and come down to say 2 brackets in the end which form () and that would be a valid expression.
An important thing to observe in the above diagram is that there are multiple ways of reaching the same solution i.e. say the optimal number of parentheses to be removed to make the original expression valid is K. We can remove multiple different sets of K brackets that will eventually give us the same final expression. But, each valid expression should be recorded only once. We have to take care of this in our solution. Note that there are other possible ways of reaching one of the two valid expressions shown above. We have simply shown 3 ways each for the two valid expressions.
Coming back to our problem, the question that now arises is, how to decide which of the parentheses to remove?
Since we don't know which of the brackets can possibly be removed, we try out all the options!
For every bracket we have two choices:
- Either it can be considered a part of the final expression OR
- It can be ignored i.e. we can delete it from our final expression.
Such kind of problems where we have multiple options and we have no strategy or metric of deciding greedily which option to take, we try out all of the options and see which ones lead to an answer. These type of problems are perfect candidates for the programming paradigm, Recursion.
Algorithm
- Initialize an array that will store all of our valid expressions finally.
- Start with the leftmost bracket in the given sequence and proceed right in the recursion.
- The state of recursion is defined by the index which we are currently processing in the original expression. Let this index be represented by the character i. Also, we have two different variables left_count and right_count that represent the number of left and right parentheses we have added to our expression till now. These are the parentheses that were considered.
- If the current character i.e. S[i] (considering S is the expression string) is neither a closing or an opening parenthesis, then we simply add this character to our final solution string for the current recursion.
- However, if the current character is either of the two brackets i.e. S[i] == '(' or S[i] == ')', then we have two options. We can either discard this character by marking it an invalid character or we can consider this bracket to be a part of the final expression.
- When all of the parentheses in the original expression have been processed, we simply check if the expression represented by expr i.e. the expression formed till now is valid one or not. The way we check if the final expression is valid or not is by looking at the values in left_count and right_count. For an expression to be valid left_count == right_count. If it is indeed valid, then it could be one of our possible solutions.
- Even though we have a valid expression, we also need to keep track of the number of removals we did to get this expression. This is done by another variable passed in recursion called rem_count.
- Once recursion finishes we check if the current value of rem_count is < the least number of steps we took to form a valid expression till now i.e. the global minima. If this is not the case, we don't record the new expression, else we record it.
One small optimization that we can do from an implementation perspective is introducing some sort of pruning in our algorithm. Right now we simply go till the very end i.e. process all of the parentheses and when we are done processing all of them, we check if the expression we have can be considered or not.
We have to wait till the very end to decide if the expression formed in recursion is a valid expression or not. Is there a way for us to cutoff from some of the recursion paths early on because they wouldn't lead to a solution? The answer to this is Yes! The optimization is based on the following idea.
For a left bracket encountered during recursion, if we decide to consider it, then it may or may not lead to an invalid final expression. It may lead to an invalid expression eventually if there are no matching closing bracket available afterwards. But, we don't know for sure if this will happen or not.
However, for a closing bracket, if we decide to keep it as a part of our final expression (remember for every bracket we have two options, either to keep it or to remove it and recurse further) and there is no corresponding opening bracket to match it in the expression till now, then it will definitely lead to an invalid expression no matter what we do afterwards.
e.g.
( ( ) ) )
In this case the third closing bracket will make the expression invalid. No matter what comes afterwards, this will give us an invalid expression and if such a thing happens, we shouldn't recurse further and simply prune the recursion tree.
That is why, in addition to having the index in the original string/expression which we are currently processing and the expression string formed till now, we also keep track of the number of left and right parentheses. Whenever we keep a left parenthesis in the expression, we increment its counter. For a right parenthesis, we check if right_count < left_count. If this is the case then only we consider that right parenthesis and recurse further. Otherwise we don't as we know it will make the expression invalid. This simple optimization saves a lot of runtime.
Now, let us look at the implementation for this algorithm.
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set; class Solution { private Set<String> validExpressions = new HashSet<String>();
private int minimumRemoved; private void reset() {
this.validExpressions.clear();
this.minimumRemoved = Integer.MAX_VALUE;
} private void recurse(
String s,
int index,
int leftCount,
int rightCount,
StringBuilder expression,
int removedCount) { // If we have reached the end of string.
if (index == s.length()) { // If the current expression is valid.
if (leftCount == rightCount) { // If the current count of removed parentheses is <= the current minimum count
if (removedCount <= this.minimumRemoved) { // Convert StringBuilder to a String. This is an expensive operation.
// So we only perform this when needed.
String possibleAnswer = expression.toString(); // If the current count beats the overall minimum we have till now
if (removedCount < this.minimumRemoved) {
this.validExpressions.clear();
this.minimumRemoved = removedCount;
}
this.validExpressions.add(possibleAnswer);
}
}
} else { char currentCharacter = s.charAt(index);
int length = expression.length(); // If the current character is neither an opening bracket nor a closing one,
// simply recurse further by adding it to the expression StringBuilder
if (currentCharacter != '(' && currentCharacter != ')') {
expression.append(currentCharacter);
this.recurse(s, index + 1, leftCount, rightCount, expression, removedCount);
expression.deleteCharAt(length);
} else { // Recursion where we delete the current character and move forward
this.recurse(s, index + 1, leftCount, rightCount, expression, removedCount + 1);
expression.append(currentCharacter); // If it's an opening parenthesis, consider it and recurse
if (currentCharacter == '(') {
this.recurse(s, index + 1, leftCount + 1, rightCount, expression, removedCount);
} else if (rightCount < leftCount) {
// For a closing parenthesis, only recurse if right < left
this.recurse(s, index + 1, leftCount, rightCount + 1, expression, removedCount);
} // Undoing the append operation for other recursions.
expression.deleteCharAt(length);
}
}
} public List<String> removeInvalidParentheses(String s) { this.reset();
this.recurse(s, 0, 0, 0, new StringBuilder(), 0);
return new ArrayList(this.validExpressions);
}
}
Leetcode 301.删除无效的括号的更多相关文章
- Java实现 LeetCode 301 删除无效的括号
301. 删除无效的括号 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明: 输入可能包含了除 ( 和 ) 以外的字符. 示例 1: 输入: "()())()&quo ...
- [LeetCode]301. 删除无效的括号(DFS)
题目 题解 step1. 遍历一遍,维护left.right计数器,分别记录不合法的左括号.右括号数量. 判断不合法的方法? left维护未匹配左括号数量(增,减)(当left为0遇到右括号,则交由r ...
- Leetcode之深度优先搜索(DFS)专题-301. 删除无效的括号(Remove Invalid Parentheses)
Leetcode之深度优先搜索(DFS)专题-301. 删除无效的括号(Remove Invalid Parentheses) 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明 ...
- 301 Remove Invalid Parentheses 删除无效的括号
删除最小数目的无效括号,使输入的字符串有效,返回所有可能的结果.注意: 输入可能包含了除 ( 和 ) 以外的元素.示例 :"()())()" -> ["()()() ...
- [Swift]LeetCode301. 删除无效的括号 | Remove Invalid Parentheses
Remove the minimum number of invalid parentheses in order to make the input string valid. Return all ...
- [LeetCode] 301. Remove Invalid Parentheses 移除非法括号
Remove the minimum number of invalid parentheses in order to make the input string valid. Return all ...
- [LeetCode] 20. Valid Parentheses 合法括号
Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...
- 每日一道 LeetCode (6):有效的括号
每天 3 分钟,走上算法的逆袭之路. 前文合集 每日一道 LeetCode 前文合集 代码仓库 GitHub: https://github.com/meteor1993/LeetCode Gitee ...
- word中几个好用的宏代码(立方米上标、关闭样式自动更新、删除无效样式、表格加粗边框、宋体引号)
Sub 替换立方米() With Selection.Find .Text = "m3" .Replacement.Text = "mm3" .Forward ...
随机推荐
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
- js 获取最后一个字符
方法一: str.charAt(str.length - 1) 方法二: str.subStr(str.length-1,1) 方法三: var str = "123456" ...
- Flutter 1.0 正式版: Google 的跨平台 UI 工具包
今天我们非常高兴的宣布,Flutter 的 1.0 版本正式发布!Flutter 是 Google 为您打造的 UI 工具包,帮助您通过一套代码同时在 iOS 和 Android 上构建媲美原生体验的 ...
- layout转Bitmap
业务需求详细描述:最近产品说要在分享的商品图中添加一些其他图片和文字,然后拼接为一张图片,再分享到微信朋友圈,于是我就一脸懵逼了,但是没办法还是得做额! 然后整理了一下思路,主要有这么两条路线: 自己 ...
- MY $MYVIMRC
set nocompatiblesource $VIMRUNTIME/vimrc_example.vim"source $VIMRUNTIME/mswin.vim"behave m ...
- Makefile介绍
make 工具如 GNU make.System V make 和 Berkeley make 是用来组织应用程序编译过程的基本工具,但是每个 make 工具之间又有所不同.不同的make工具的mak ...
- 【HEVC帧间预测论文】P1.1 基于运动特征的HEVC快速帧间预测算法
基于运动特征的 HEVC 快速帧间预测算法/Fast Inter-Frame Prediction Algorithm for HEVC Based on Motion Features <HE ...
- 30行代码消费腾讯人工智能开放平台提供的自然语言处理API
腾讯人工智能AI开放平台上提供了很多免费的人工智能API,开发人员只需要一个QQ号就可以登录进去使用. 腾讯人工智能AI开放平台的地址:https://ai.qq.com/ 里面的好东西很多,以自然语 ...
- Netbeans调试教程
官方教程:Netbeans调试 CC++ 项目教程.docx 1.步过: 就是把函数当成一条指令来调用 比如上面就是光执行fun(i),不会到函数里面去 2.步入 就是进入函数里面执行 3.步出 就是 ...
- Mybatis和Spring整合&逆向工程
Mybatis和Spring整合&逆向工程Mybatis和Spring整合mybatis整合Spring的思路目的就是将在SqlMapConfig.xml中的配置移植到Spring的appli ...