频繁项集------->产生强关联规则的过程
频繁项集------->产生强关联规则的过程
1.由Apriori算法(当然别的也可以)产生频繁项集
2.根据选定的频繁项集,找到它所有的非空子集
3.强关联规则需要满足最小支持度和最小置性度 (假设关联规则是:A=>B , support(A=>B)= { P(AUB) } confidence(A=>B)=P(B|A)={ P(AUB)/P(A) } 。这里求概率都可以替换为求支持度计数(就是统计在源数据表中各个出现的次数,例如:P(AUB) 就找A和B在源数据表中同时发生了多少次)
4.找到所有可能性的关联规则。例如:频繁项集为:{1,2,3} -------->非空子集则为:{1,2},{1,3},{2,3},{1},{2},{3}---------->可能的关联规则为:{1,2}=>3 , {1,3}=>2 , {1,3}=>2 , 1=>{2,3},2=>{1,3},3=>{1,2}
5.最后计算所有可能的关联规则的置信度,找到符合最小置信度(会给出)的规则,它们则为强关联规则。
频繁项集------->产生强关联规则的过程的更多相关文章
- 关联规则—频繁项集Apriori算法
频繁模式和对应的关联或相关规则在一定程度上刻画了属性条件与类标号之间的有趣联系,因此将关联规则挖掘用于分类也会产生比较好的效果.关联规则就是在给定训练项集上频繁出现的项集与项集之间的一种紧密的联系.其 ...
- 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘
http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 频繁项集挖掘之apriori和fp-growth
Apriori和fp-growth是频繁项集(frequent itemset mining)挖掘中的两个经典算法,虽然都是十几年前的,但是理解这两个算法对数据挖掘和学习算法都有很大好处.在理解这两个 ...
- 使用 FP-growth 算法高效挖掘海量数据中的频繁项集
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...
- Apriori算法-频繁项集-关联规则
计算频繁项集: 首先生成一个数据集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] 测试数据集da ...
- Python两步实现关联规则Apriori算法,参考机器学习实战,包括频繁项集的构建以及关联规则的挖掘
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...
- 【机器学习实战】第12章 使用FP-growth算法来高效发现频繁项集
第12章 使用FP-growth算法来高效发现频繁项集 前言 在 第11章 时我们已经介绍了用 Apriori 算法发现 频繁项集 与 关联规则.本章将继续关注发现 频繁项集 这一任务,并使用 FP- ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- 【面试题】LRU算法及编码实现LRU策略缓存
概念 LRU(least recently used)就是将最近不被访问的数据给淘汰掉,LRU基于一种假设:认为最近使用过的数据将来被使用的概率也大,最近没有被访问的数据将来被使用的概率比较低. 原理 ...
- LeetCode(88)Merge Sorted Array
题目 Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. Note ...
- Python条件判断(if)
Python条件判断(if) 一.基本介绍 1.Python 编程中 if 语句用于控制程序的执行,基本形式为: if 判断条件: 执行语句…… 需要注意的是,Python没有像其他大多数语言一样使用 ...
- Python安装配置
Python下载 官网下载地址:https://www.python.org/downloads/windows/ 下载安装包: python-3.5.0-amd64(64位).exe python- ...
- jQuery学习之------选择器
a.id选择器 <div id=”test1”></div> var div1=$(“#test1”); //同css的写法一样id选择器用#号实 ...
- Android BGABadgeView:BGABadgeImageView以及BGABadgeRelativeLayout(4)
Android BGABadgeView:BGABadgeImageView以及BGABadgeRelativeLayout(4) 在附录文章5,6,7的基础上,写一个小例子说明BGABadge ...
- parse XML & JSON & js
parse XML & JSON & js how to parse xml data into json in js? https://stackoverflow.com/quest ...
- stl lower_bound()返回值
http://blog.csdn.net/niushuai666/article/details/6734403 函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回 ...
- SPOJ 3267 D-query (可持久化线段树,区间重复元素个数)
D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair ...
- hdu - 2660 Accepted Necklace (二维费用的背包问题)
http://acm.hdu.edu.cn/showproblem.php?pid=2660 f[v][u]=max(f[v][u],f[v-1][u-w[i]]+v[i]; 注意中间一层必须逆序循环 ...