/*
2(2N+1)魔方阵
*/ #include<stdio.h>
#include<stdlib.h> #define N 6
#define SWAP(x, y) {int t; t = x; x = y; y = t;} void magic_o(int [][N], int);
void exchange(int [][N], int); int main(void){
int square[N][N] = {};
int i, j;
magic_o(square, N/);
exchange(square, N); for(i = ; i < N; i++){
for( j = ; j < N; j++){
printf("%2d ", square[i][j]);
}
putchar('\n');
}
return ;
} void magic_o(int square[][N], int n){
int count, row, column;
row = ;
column = n /; for(count = ; count <= n*n; count++){
square[row][column] = count;
square[row+n][column+n] = count + n*n;
square[row][column+n] = count + *n*n;
square[row+n][column] = count + *n*n;
if(count % n == ){
row++;
}else{
row = (row == ) ? n - : row - ;
column = (column == n - ) ? : column + ;
}
}
} void exchange(int x[][N], int n){
int i, j;
int m = n / ;
int m1 = m - ; for(i = ; i < n/; i++){
if(i != m){
for(j = ; j < m; j++){
SWAP(x[i][j], x[n/+i][j]);
}
for(j = ; j < m1; j++){
SWAP(x[i][n--j], x[n/+i][n--j]);
}
}else{
for(j = ; j <= m; j++){
SWAP(x[m][j], x[n/+m][j]);
}
for(j = ; j <= m1; j++){
SWAP(x[m][n--j], x[n/+m][n--j]);
}
}
}
}

运行结果:

【2(2N+1)魔方阵 】的更多相关文章

  1. 任意阶魔方阵(幻方)的算法及C语言实现

    写于2012.10: 本来这是谭浩强那本<C程序设计(第四版)>的一道课后习题,刚开始做得时候去网上找最优的算法,结果发现奇数和双偶数(4的倍数)的情况下算法都比较简单,但是单偶数(2的倍 ...

  2. 魔方阵算法及C语言实现

    1 魔方阵概念 填充的,每一行.每一列.对角线之和均相等的方阵,阶数n = 3,4,5….魔方阵也称为幻方阵. 例如三阶魔方阵为: 魔方阵有什么的规律呢? 魔方阵分为奇幻方和偶幻方.而偶幻方又分为是4 ...

  3. C语言——打印魔方阵(每一行,每一列,对角线之和相等)

    <一>魔方阵说明: 魔方阵是一个N*N的矩阵: 该矩阵每一行,每一列,对角线之和都相等: <二>魔方阵示例: 三阶魔方阵: 8   1   6 3   5   7 4   9 ...

  4. n阶魔方阵(奇数阵)的输出

    需求 要求输出1~n²的自然数构成的魔方阵. STEP 1 什么是魔方阵? 魔方阵,古代又称“纵横图”,是指组成元素为自然数1.2…n2的平方的n×n的方阵,其中每个元素值都不相等,且每行.每列以及主 ...

  5. 神奇的魔方阵--(MagicSquare)(1)

    本篇文章只对奇数阶以及偶数阶中阶数n = 4K的魔方阵进行讨论.下面就让我们进入正题: 1 :魔方阵的相关信息:(百度百科) https://baike.baidu.com/item/%E9%AD%9 ...

  6. 神奇的魔方阵--(MagicSquare)(2)

    在上一篇博客中,我们讨论了阶数为奇数,以及阶数为(4K)的魔方阵的排列规则,以及代码实现(详见:https://www.cnblogs.com/1651472192-wz/p/14640903.htm ...

  7. node操作MongoDB数据库之插入

    在上一篇中我们介绍了MongoDB的安装与配置,接下来的我们来看看在node中怎样操作MongoDB数据库. 在操作数据库之前,首先应该像关系型数据库一样建个数据库把... 启动数据库 利用命令提示符 ...

  8. c经典算法

    1. 河内之塔 说明 河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时 北越的首都,即现在的胡志明市:1883年法国数学家 Ed ...

  9. Java经典算法大全

    1.河内之塔.. 2.Algorithm Gossip: 费式数列. 3. 巴斯卡三角形 4.Algorithm Gossip: 三色棋 5.Algorithm Gossip: 老鼠走迷官(一) 6. ...

随机推荐

  1. RSA实践指南

    创建时间:2005-03-02 文章属性:原创 文章提交:watercloud (watercloud_at_xfocus.org) RSA算法基础->实践 讲讲自己学习RSA中的实践过程,已经 ...

  2. Masonry布局框架的使用

    Masonry是一个轻量级的布局框架 拥有自己的描述语法 采用更优雅的链式语法封装自动布局 简洁明了 并具有高可读性.比我们使用自动布局,繁琐的约束条件,好用多了.下面我们来学学masonry的使用方 ...

  3. Unknown/unsupported storage engine: InnoDB

    症状:无法启动mysql,在“mysql数据库目录/主机名.err”日志文件中报错 Unknown/unsupported storage engine: InnoDB原因:MySQL5.5.8 GA ...

  4. STM32——timer

    原文地址: http://blog.sina.com.cn/s/blog_49cb42490100s6ud.html   1.     STM32的Timer简介 STM32中一共有11个定时器,其中 ...

  5. CocoaPods 更新慢&swift版本适配

    一.更新慢的问题 使用CocoaPods来添加第三方类库,无论是执行pod install还是pod update都卡在了Analyzing dependencies不动 原因在于当执行以上两个命令的 ...

  6. bzoj2453

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2453 题目大意: (1)       若第一个字母为“M”,则紧接着有三个数字L.R.W.表 ...

  7. Xcode7中 添加 .dylib

    转一个 Xcode 7 缺少 *.dylib库的解决方法 Xcode7中 Link Binary With Libraries 没有 .dylib库,只能找到对应的 .tbd,但不能代替使用,通过查找 ...

  8. bug工具

    在线工具:柠檬bug管理--兼顾项目管理 开源工具:PPM Bug 缺陷管理系统 项目管理.bug管理:http://www.bugfree.cn

  9. cf734 E. Anton and Tree

    这个题的题意还是很劲的.搞了好久才知道是怎么变得. (假设已经缩好了点,每次边中间颜色不同的,然后和就和他外面的相同,继续再变这个大的,依次类推,最多就是树的直径D/2) (还是英语水平太弱了(吐槽+ ...

  10. python如何安装模块

    1.从 https://pypi.python.org/pypi/XXXX  下载压缩包 2.解压所下载的压缩包 3.CD到解压目录,执行 sudo python setup.py install