#include <stdio.h>
#include <string.h>
const int N = ;
int a[N];
int dp[N][];
inline int min(const int &a, const int &b)
{
return a < b ? a : b;
} /*
dp[i][j] 表示以i开头的,长度为2^j的区间中的最小值
很明显dp[i][0] = a[i];
且转移方程为 dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1)][j-1]); 将区间分为2个2^(j-1)的小区间
*/
void RMQ_init(int n)
{
int i,j;
for(i=; i<=n; ++i) dp[i][] = a[i];
for(j=; (<<j)<=n; ++j)
for(i=; i+(<<j)-<=n; ++i)
dp[i][j] = min(dp[i][j-],dp[i+(<<(j-))][j-]);//将区间分为2个2^(j-1)的小区间,dp的思想
} //令2^k <= R-L+1, 则以L开头,以R结尾的长度为2^k的区间合起来,就覆盖了区间[L,R]
//2^k <= R-L+1, 则2^k的长度为区间[L,R]的半数以上,所以以L开头,以R结尾的长度为2^k的区间能够覆盖区间[L,R]
int RMQ(int L, int R)
{
int k = ;
while(<<(k+) <= R-L+) k++;
return min(dp[L][k], dp[R-(<<k)+][k]);
}
int main()
{
int n ,i,L,R;
scanf("%d",&n);
for(i=; i<=n; ++i)
scanf("%d",&a[i]);
RMQ_init(n);
while(scanf("%d%d",&L,&R)!=EOF)
{
printf("%d\n",RMQ(L,R));
}
return ;
}

RMQ之ST算法的更多相关文章

  1. RMQ的ST算法

    ·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], ...

  2. RMQ(ST算法)

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i ...

  3. RMQ之ST算法模板

    #include<stdio.h> #include<string.h> #include<iostream> using namespace std; ; ],M ...

  4. RMQ问题+ST算法

    一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大 ...

  5. RMQ问题——ST算法

    比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随 ...

  6. [总结]RMQ问题&ST算法

    目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced ...

  7. RMQ问题ST算法 (还需要进一步完善)

    /* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的 ...

  8. RMQ 问题 ST 算法(模板)

    解决区间查询最大值最小值的问题 用 $O(N * logN)$ 的复杂度预处理 查询的时候只要 $O(1)$ 的时间  这个算法是 real 小清新了   有一个长度为 N 的数组进行 M 次查询 可 ...

  9. Round #4 RMQ问题ST算法

    前几天群里看到有人问[JSOI2008]最大数,一道很简单的问题,线段树无脑做,但是看到了动态ST,emmm,学学吧,听大佬说了下思路,还好,不难的: 四道题都可以用其他数据结构或做法代替,例如线段树 ...

随机推荐

  1. C/C++中constkeyword

    今天在做一个趋势笔试题的时候.才让我有了系统把constkeyword好好总结一下的冲动,由于这个关键词大大小小好多地方都出现过,出现频率很高,而每次仅仅是简短的把答案看了一下,没有真正将其整个使用方 ...

  2. Android开发之搜Ya项目说明(3)

    项目 搜芽移动client ----seller,app,base三个包的简单说明 作者 曾金龙 Tel:18664312687 QQ :470910357@qq.com 时间 2014-10-14 ...

  3. 对TMemoryStream的一些改进(用到了LockFile)

    对TMemoryStream的一些改进 怎么又是关于Stream的,呵呵,应该说只是最近比较关心程序的效率问题,而我对Stream其实并没有什么特别的研究,只是自己发现了一些新的用法,希望能对大家有用 ...

  4. HDU 1394 Minimum Inversion Number (线段树 单点更新 求逆序数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给你一个n个数的序列,当中组成的数仅仅有0-n,我们能够进行这么一种操作:把第一个数移到最 ...

  5. Extjs学习----------动态载入js文件(减轻浏览器的压力)

    动态载入js文件能够减轻浏览器的压力,本例使用了Ext.window.Window组件,该组件的学习地址:http://blog.csdn.net/z1137730824/article/detail ...

  6. THashMD5,THashSHA1,THashBobJenkins,TIdHashMessageDigest5的用法

    [delphi] view plain copy unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils ...

  7. 终于懂了:TControl.Perform是有返回值的,且看VCL框架如何利用消息的返回值(全部例子都在这里)——它的存在仅仅是为了方便复用消息的返回值

    代码如下: function TControl.Perform(Msg: Cardinal; WParam, LParam: Longint): Longint; var Message: TMess ...

  8. StringBuilder、StringBuffer和String三者的联系和区别(转)

    StringBuilder.StringBuffer和String三者的联系和区别 1. String 类    String的值是不可变的,这就导致每次对String的操作都会生成新的String对 ...

  9. Android开发者必须深入学习的10个应用开源项目

    Android 开发又将带来新一轮热潮,很多开发者都投入到这个浪潮中去了,创造了许许多多相当优秀的应用.其中也有许许多多的开发者提供了应用开源项 目,贡献出他们的智慧和创造力.学习开源代码是掌握技术的 ...

  10. zoj 2822 Sum of Different Primes (01背包)

    ///给你n 求他能分解成多少个的不同的k个素数相加之和 ///01背包,素数打表 # include <stdio.h> # include <algorithm> # in ...