HDU-1852-Beijing 2008-一个神奇的公式求逆元
Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.
Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.
InputThe input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.
Output
For each test case, in a separate line, please output the result.
Sample Input
1 10000
0 0
Sample Output
5776 题意:
好好理解看清楚:
S=2008^x,所有因子和 get the sum S of all positive integer divisors of 2008 N.
M=S%k(已知k) the rest of the division of S by K. The result is kept as M
求2008^M%k
#include<stdio.h>
typedef long long ll; ll ksm(ll x,ll n,ll mod)
{
ll res=;
while(n>)
{
if(n&)
res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res%mod;
} //S=2008^x,所有因子和 get the sum S of all positive integer divisors of 2008 N.
//M=S%k(已知k) the rest of the division of S by K. The result is kept as M
//求2008^M%k int main()
{
ll n,k;
while(~scanf("%lld %lld",&n,&k))
{
if(n==&&k==)
break;
ll k2=ksm(,*n+,k*);
if(k2-<)
k2=k2-+k;
else
k2--; ll k251=ksm(,n+,*k);
if(k251-<)
k251=k251-+k;
else
k251--; ll M=k2*(k251)%(*k)/;
// ll M=k2*(k251/k)%(250*k);
// ll M=k2*(k251/250)%(250*k); WA,注意一下
ll ans=ksm(,M,k);
printf("%lld\n",ans);
}
return ;
}
HDU-1852-Beijing 2008-一个神奇的公式求逆元的更多相关文章
- HDU 1852 Beijing 2008 数论
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=1852 这道题和HDU1452类似. 题意:给你一个n.k,让你求2008^n所有因子的和(包括1和本 ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- 一个简单的公式——求小于N且与N互质的数的和
首先看一个简单的东西. 若$gcd(i,n)=1$,则有$gcd(n-i,n)=1$ 于是在小于$n$且与$n$互质的数中,$i$与$n-i$总是成对存在,且相加等于$n$. 考虑$i=n-i$的特殊 ...
- HDU1852 Beijing 2008(快速幂+特殊公式)
As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...
- hdu 1852(快速幂模+有除法的时候取模的公式)
Beijing 2008 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Tota ...
- HDU 1014 Uniform Generator(模拟和公式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- modifytime是一个神奇的column name----这边文章是错的totally,因为我的实验不彻底。timestamp属性很神奇,头一个timestamp,会自动的成DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
在mysql里边modifytime是一个神奇的column name,试一下. 请执行sql语句 CREATE TABLE `test_time` ( `modifytime` timestamp ...
随机推荐
- 本地项目上传github
(1)github上面新建仓库 (2) 1. git init //初始化仓库 2. git add .(文件name) //添加文件到本地仓库 3. git commit -m "firs ...
- 10.Struts2值栈
1.什么是值栈 * 值栈就相当于Struts2框架的数据的中转站,向值栈存入一些数据.从值栈中获取到数据. * ValueStack 是 struts2 提供一个接口,实现类 OgnlValueSta ...
- css的3d注意事项
1,如果要写出立体效果,所有的父容器都要添加属性transform-style: preserve-3d;不然子元素不能进行3d变换:背景色要写到最外层容器,且不能有transform-style: ...
- mysql 删除同样记录只保留一条
delete from fa_order_account ) as a) ) as b)
- NX二次开发-创建圆弧(起点-终点-半径)UF_CURVE_create_arc_point_point_radius
NX9+VS2012 #include <uf.h> #include <uf_curve.h> UF_initialize(); //起点 ]; ArcStartPoint[ ...
- easyUI tabs 显示与隐藏 tab 页
隐藏: tab_option = $('#tabs').tabs('getTab'," 单位信息 ").panel('options').tab; tab_option.hide( ...
- LeetCode 1041. Robot Bounded In Circle (困于环中的机器人)
题目标签:Math 题目让我们判断机器人是否是一直在走一个圈. 当我们把 instructions 走完一遍时候: 1. 如果机器人回到了原点,那么它是在走一个圈. 2. 如果机器人的方向没有改变,那 ...
- LeetCode 1019. Next Greater Node In Linked List (链表中的下一个更大节点)
题目标签:Linked List, Stack 题目给了我们一个 Linked List,让我们找出对于每一个数字,它的下一个更大的数字. 首先把 Linked List 里的数字 存入 ArrayL ...
- (转)Python之路,Day6 - 面向对象学习
本节内容: 面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法. 引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战> ...
- Day 11:函数装饰器
在说装饰器前,先说一个东西,再Python里,有一个 一切皆对象,一切皆变量. 例: def hello(name="sunjinyao"): return "hi &q ...