背景知识

腐蚀与膨胀基本原理:就是用一个特定的结构元素来与待处理图像按像素做逻辑操作;可以理解成拿一个带孔的网格板(结构元素矩阵中元素为1的为孔)盖住图像的某一部分,然后按照各种不同的观察方式来确定操作类型。

比如:腐蚀操作就是拿这个结构元素的中心位置(假设参与逻辑计算的元素对应与二维矩阵中元素为1的点,即网格板上的孔),在图像上移动时,如果透过所有的孔都能看到底下的图像,那么这个中心点处的图像就保留,否则去除。

腐蚀

图像腐蚀运算定义

二值图像腐蚀运算的数学表达式为

g(x,y)=erode[f(x, y ), B]=AND[Bf(x,y)]

其中,g(x,y)为腐蚀后的二值图像,f(x,y)为原二值图像,B为结构元素。B(x,y)定义为:

Bf(x,y)={f(x-bx, y-by) ,(bx, by)∈B}

算子AND(x1,…,xn)定义为:当且仅当x1=··=xn=1时,AND(x1,…,xn)等于1;否则为0。

把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba∈X}=XB。原理图如下:

实际使用时示意图:

说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。

        private void erode_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "腐蚀运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
BitmapData bmpData = curBitmap.LockBits(rect, ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); //得到结构元素
byte flagStru = struForm.GetStruction; byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = ;
}
switch (flagStru)
{
case 0x11:
//3位水平方向结构元素
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j ++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
}
}
}
break;
case 0x21:
//5位水平方向结构元素
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
}
}
}
break;
case 0x12:
//3位垂直方向结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
//5位垂直方向结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
//3位十字形状结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
//5位十字形状结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
//3位方形结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
//5位方形结构元素
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone();
Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
 #region 关于图像尺寸的说明

        //本代码只能处理8位深度的512*512图像。可自行修改,如修改3位水平方向结构元素代码:

        //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion

膨胀

图像膨胀运算定义

二值图像膨胀运算的数学表达式为:

g(x, y)=dilate[f(x, y), B]=OR[Bf(x,y)]

其中,g(x,y)为膨胀后的二值图像,f(x,y)为原二值图像,B为结构元素。

B(x,y)定义为:

Bf(x,y)={f(x-bx, y-by) ,(bx, by)∈B}

算子OR(x1…xn)定义为:当且仅当x1=…=xn=0时,OR(x1,…xn)等于0;否则为1

膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的结果。用公式表示为:D(X)={a | Ba↑X}=X  B,如图6.13所示。图6.13中X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。原理图如下:

实际使用时示意图:

说明:左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。

private void dilate_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "膨胀运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
BitmapData bmpData = curBitmap.LockBits(rect, ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); byte flagStru = struForm.GetStruction; byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = ;
} switch (flagStru)
{
case 0x11:
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x21:
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x12:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j - ] == ||
grayValues[(i - ) * curBitmap.Width + j] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[(i - ) * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j - ] == ||
grayValues[i * curBitmap.Width + j] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[i * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j - ] == ||
grayValues[(i + ) * curBitmap.Width + j] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == ||
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone(); System.Runtime.InteropServices.Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
#region 关于图像尺寸的说明

        //本代码只能处理8位深度的512*512图像。可自行修改,例如修改3位水平方向结构元素代码:

        //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion

c#数字图像处理(十二)图像的腐蚀与膨胀的更多相关文章

  1. Win8MetroC#数字图像处理--2.2图像二值化函数

    原文:Win8MetroC#数字图像处理--2.2图像二值化函数 [函数代码] /// <summary> /// Binary process. /// </summary> ...

  2. Win8 Metro(C#)数字图像处理--3.2图像方差计算

    原文:Win8 Metro(C#)数字图像处理--3.2图像方差计算 /// <summary> /// /// </summary>Variance computing. / ...

  3. Win8 Metro(C#)数字图像处理--3.3图像直方图计算

    原文:Win8 Metro(C#)数字图像处理--3.3图像直方图计算 /// <summary> /// Get the array of histrgram. /// </sum ...

  4. Win8 Metro(C#)数字图像处理--3.4图像信息熵计算

    原文:Win8 Metro(C#)数字图像处理--3.4图像信息熵计算 [函数代码] /// <summary> /// Entropy of one image. /// </su ...

  5. Win8 Metro(C#)数字图像处理--3.5图像形心计算

    原文:Win8 Metro(C#)数字图像处理--3.5图像形心计算 /// <summary> /// Get the center of the object in an image. ...

  6. Win8 Metro(C#)数字图像处理--3.1图像均值计算

    原文:Win8 Metro(C#)数字图像处理--3.1图像均值计算 /// <summary> /// Mean value computing. /// </summary> ...

  7. Win8 Metro(C#)数字图像处理--2.74图像凸包计算

    原文:Win8 Metro(C#)数字图像处理--2.74图像凸包计算 /// <summary> /// Convex Hull compute. /// </summary> ...

  8. Win8 Metro(C#)数字图像处理--2.68图像最小值滤波器

    原文:Win8 Metro(C#)数字图像处理--2.68图像最小值滤波器 /// <summary> /// Min value filter. /// </summary> ...

  9. Win8 Metro(C#)数字图像处理--2.52图像K均值聚类

    原文:Win8 Metro(C#)数字图像处理--2.52图像K均值聚类  [函数名称]   图像KMeans聚类      KMeansCluster(WriteableBitmap src,i ...

  10. Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法

    原文:Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法 [函数名称]   图像雾化         AtomizationProcess(WriteableBitmap src,i ...

随机推荐

  1. Docker应用容器引擎

    1.Docker概述 1.1.Docker简介 Docker 是一个开源的应用容器引擎,基于 Go 语言开发.Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到 ...

  2. Visual Studio Team Services and Team Foundation Server官方资料入口

    Team Foundation Server msdn 中文文档入口 Visual Studio Team Services or Team Foundation Server www.visuals ...

  3. 模型正则化,dropout

    正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...

  4. unity3D 自定义公告牌

    前言 有时候我们希望公告牌跟随镜头旋转永远平行面向屏幕,同时跟随镜头缩放缩放大小不变(镜头远离物体,正常物体视觉效果变小,但公告牌视觉大小比例不变),或者跟随镜头缩放变化,本文记录C#脚本的两种实现方 ...

  5. TCP/IP Basic

    1.概述 TCP/IP起源于60年代美国政府遮住的一个分组交换网络项目,在当今被定义为互联网通信接口,TCP/IP主要分为4层,每一层负责不同的通信功能,这促成了一个协议族的诞生,而TCP/IP是一组 ...

  6. 【题解】CTSC1999家园(网络流)

    CTSC1999家园 建模方法类似我NOI2019网络同步赛我的T1写法[[题解]NOI2019Route](70分) 问题的焦点是:空间时间载具. 考虑如何击破时间限制,可以对每个点关于每个时刻建立 ...

  7. 探索 模块打包 exports和require 与 export和import 的用法和区别

    菜单快捷导航: CommonJS 之 exports和require用法 ES6 Module 之 export 和 import 用法 CommonJS和ES6 Module的区别 循环依赖 和 解 ...

  8. 全网最详细的Ceph14.2.5集群部署及配置文件详解,快来看看吧! -- <2>

    部署Ceph集群 Ceph版本选择 Ceph版本来源介绍 Ceph 社区最新版本是 14,而 Ceph 12 是市面用的最广的稳定版本. 第一个 Ceph 版本是 0.1 ,要回溯到 2008 年 1 ...

  9. Linux开发环境及应用—《第三周单元测验》《第四周单元测验》

    三单元 1.vi处于文本输入状态时,按下下列哪个按键可以返回命令状态?C A.^ B.$ C.Esc D- 2.vi处于命令状态时,按下下列哪组按键可以把正在编辑的内容保存到磁盘上?D A.Ctrl- ...

  10. java基础之----redi分布式锁

    最近项目中,用到了redis分布式锁,使用过程有些心得,所以希望分享给大家. 首先我们意识里要知道分布锁有哪些? 分布式锁一般分三种,基于数据库的乐观锁,基于redis的分布式锁,基于zookeper ...