题目:现在有n个人需要依次使用1个洗手池洗手,进行一步洗手需要1单位时间。他们每个人至少会进行一步洗手,但是却不一定进行了完整的七部洗手。

现在你知道了他们总共的洗手时间为t,请你推测他们有多少人进行了完整的七步洗手。

输入格式:一行两个整数n,t,依次代表人数和总洗手时间。

输出格式:一行两个整数,依次代表进行了完整七步洗手人数的最小值和最大值。

首先,最大值应该是比较容易想到的,用总时间t除以7再向下取整。设有一队伍站着的就是这些洗手的人,那么这种情况就是假设第一个人就进行了完整的七步洗手,第二个也是,第三个也是。。。直到检测完第i个人以后发现剩下的时间不足7时,那么前面i就是最大值。

最小值怎么求呢?

先假设他们都没有进行完整的七步洗手,从最不济的情况考虑,他们都洗了六步,那么总时间就是6*n,如果6*n等于t,那么他们就都洗了六步,最小值为0。如果t还比6n小,那么最小值就更是0了,这代表可能其中有人洗了五步,四步,或更少,这样总时间就比6n少了。也就是说,如果6n>=t,那么最小值是0;

再处理6n<t的情况。这种情况代表至少有一个人洗了七步。那么什么条件代表至少有、两个,三个甚至更多人洗了七步呢?

先假设已经确定有一个人洗了7步。用下图表示:【  】代表未确定洗手步骤的人。【n】表示已确定的洗手步骤为n的人。

【  】【  】【  】【  】【  】【  】【  】【  】 【7】

此时可以发现,洗了七步的人洗完以后,时间还剩t-7.人数还剩n-1。

此时就容易了。接续上面的思想,假设其余的n-1个人全部洗了6步:

【6】【6】【6】【6】【6】【6】【6】【6】 【7】

|<--------n-1个人,实际时长:6(n-1)--------->|

那么n-1个人的总时长就是6(n-1)。实际时长是t-7,如果6(n-1)==t-7,那么他们n-1个人就真的全部洗了六步(最不济的情况)!6(n-1)>t-7就更不用说了,此时代表可能其中有人洗了五步,四步,或更少,这样实际总时间就比6(n-1)少了。那么,如果6(n-1)<t-7,就代表除去已经确定的七步洗手的一个人以外,还有至少一个人洗了七步。

接下来就很简单了。已经确定有两个人洗了七步的情况:

【  】【  】【  】【  】【  】【  】【  】【7】【7】

“最不济的情况”:

【6】【6】【6】【6】【6】【6】【6】【7】 【7】

|<-----n-2个人,实际时长:6(n-2)---->|

当6(n-2)<t-2*7时,代表除去已经确定的七步洗手的两个人以外,还有至少一个人洗了七步。

以此类推,设已经确定的七步洗手人数为i,那么如果6(n-i)<t-7i,那么i还不够,要自增1.直到6(n-i)>=t-7i为止。这样的话,剩余的人中最不济的情况下不会有人洗了七步。“全部n个人都洗了六步”的那种情况下(一开始那种),i=0。

程序如下:

 #include<iostream>
using namespace std;
int main()
{
int people,time;
cin>>people>>time;
int max=time/; //这就是最大值
int min=;
while((people-min)*<time-*min) //还有人洗了七步
{
min++;
}
cout<<min<<" "<<max;
return ;
}

T117897 七步洗手法 / PJT1(洛谷)的更多相关文章

  1. 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)

    和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm& ...

  2. 洛谷P4526 【模板】自适应辛普森法2

    P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...

  3. 洛谷 P5221 Product 题解

    原题链接 庆祝!第二道数论紫题. 推式子真是太有趣了! \[\prod_{i=1}^n \prod_{j=1}^n \frac{\operatorname{lcm}(i,j)}{\gcd(i,j)} ...

  4. 最小表示法模板(洛谷P1368 工艺)(最小表示法)

    洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...

  5. 2018.07.17 洛谷P1368 工艺(最小表示法)

    传送门 好的一道最小表示法的裸板,感觉跑起来贼快(写博客时评测速度洛谷第二),这里简单讲讲最小表示法的实现. 首先我们将数组复制一遍接到原数组队尾,然后维护左右指针分别表示两个即将进行比较的字符串的头 ...

  6. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  7. 洛谷4525 & 4526:【模板】自适应辛普森法——题解

    参考:https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B ...

  8. 洛谷P4525 【模板】自适应辛普森法1与2

    洛谷P4525 [模板]自适应辛普森法1 与P4526[模板]自适应辛普森法2 P4525洛谷传送门 P4525题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛 ...

  9. 洛谷 P1736 创意吃鱼法

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...

随机推荐

  1. vue-learning:28 - component - 组件事件的修饰符`.native / .sync`,以及组件属性`model`

    组件事件的修饰符.native / .sync,以及组件属性model .native 原生事件修饰符 在一个组件中,如果我们为其绑定一个原生的点击事件@click,基本是无效的. 在vue中对组件绑 ...

  2. msbuild 项目文件常用判断条件

    在写项目文件的时候,需要根据不同的条件定义或执行不同的代码,有一些比较常使用的判断,本文收藏起来,方便大家找 在 msbuild 的项目文件 cspoj 或 xx.target 等文件里面,可以使用 ...

  3. 找不到 javax.servlet.http.HttpServletResponse 和 javax.servlet.http.HttpServletRequest 问题解决

    时隔3个月,我又回来了!在做完毕设之后,由于对此过程中学到的一些东西疏于整理,所以当再次打开我的project时有些手足无措,以至于出现一些问题也要解决好半天,我知错! 今天的问题是: 开始搜到的解决 ...

  4. HBase的TTL介绍

    1. 定义 TTL(Time to Live) 用于限定数据的超时时间. 2.原理 以Column Family的TTL为例介绍, hbase(main):001:0> desc 'wxy:te ...

  5. 基于 WebSocket 的聊天和大文件上传(有进度提示)完美实现

    大家好,好久没有写文章了,当然不是不想写,主要是工作太忙,公司有没有网络环境,不让上网,所以写的就少了.今天是2019年的最后一天,明天就要开始新的一年,当然也希望自己有一个新的开始.在2019年的最 ...

  6. 牛客国庆days赛 地铁

    传送门:https://ac.nowcoder.com/acm/problem/52805 我佛了,还能跑边图啊!!! 跑边图不能用vector啦啦啦啦啦 具体也不难,就直接上代码了 #include ...

  7. 最长无重复子串问题 leetcode 3

    一.代码及注释 class Solution { public: int lengthOfLongestSubstring(string s) { int n = s.size(); //字符串的长度 ...

  8. nginx部署VUE跨域访问api

    H5端配置跨域 nginx跨域配置 server { listen 80; charset utf-8; server_name you_dome_name;#location /tasklist.j ...

  9. 20191121-2 Final发布

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/10062 操作视频:https://www.bilibili.com/vi ...

  10. spring注解之@Import注解的三种使用方式

    目录 1.@Import注解须知 2.@Import的三种用法 3.@Import注解的三种使用方式总结 @ 1.@Import注解须知 1.@Import只能用在类上 ,@Import通过快速导入的 ...