cf1000E

先缩点构造出一颗树,然后求树的直径就好
const int maxn=3e5+5;
const int maxm=6e5+5;
const int inf=1e9; int head[maxn],ver[maxm],nex[maxm],tot; void inline AddEdge(int x,int y){
ver[++tot]=y,nex[tot]=head[x],head[x]=tot;
} int n,m; bool bridge[maxm]; int dfn[maxn],low[maxn]; int num; void Tarjan(int x,int edge){
//cout<<x<<endl;
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=nex[i]){
int y=ver[i];
if(!dfn[y]){
Tarjan(y,i);
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x])
bridge[i]=bridge[i^1]=1;
}
else if(i!=(edge^1))
low[x]=min(low[x],dfn[y]);
}
} int id[maxn],bcc; namespace solve{
int head[maxn],ver[maxm],nex[maxm],tot; void inline AddEdge(int x,int y){
ver[++tot]=y,nex[tot]=head[x],head[x]=tot;
} int f1[maxn],f2[maxn]; int ans; int dfs(int x,int pa){
f1[x]=f2[x]=0;
for(int i=head[x];i;i=nex[i]){
int y=ver[i];
if(y==pa) continue;
dfs(y,x);
if(f1[x]<f1[y]+1){
f2[x]=f1[x];
f1[x]=f1[y]+1;
}
else if(f2[x]<f1[y]+1){
f2[x]=f1[y]+1;
}
}
ans=max(ans,f1[x]+f2[x]);
return ans;
} }; void dfs(int x,int pa){
id[x]=bcc;
for(int i=head[x];i;i=nex[i]){
int y=ver[i];
if(y==pa || bridge[i] || id[y]) continue;
dfs(y,pa);
}
}
int main(){
scanf("%d%d",&n,&m);
tot=1;
for(int i=0;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)
if(!dfn[i]) Tarjan(i,0);
// for(int i=1;i<=n;i++)
// cout<<low[i]<<' '<<i<<endl;
for(int i=1;i<=n;i++)
if(!id[i]) bcc++,dfs(i,0);
// cout<<bcc<<endl;
// for(int i=1;i<=n;i++)
// cout<<id[i]<<endl;
for(int i=2;i<=tot;i+=2){
if(bridge[i]) {
solve::AddEdge(id[ver[i]],id[ver[i^1]]);
solve::AddEdge(id[ver[i^1]],id[ver[i]]);
// cout<<id[ver[i]]<<' '<<id[ver[i^1]]<<endl;
}
}
cout<<solve::dfs(1,0)<<endl;
}
cf1000E的更多相关文章
- cf1000E We Need More Bosses (tarjan缩点+树的直径)
题意:无向联通图,求一条最长的路径,路径长度定义为u到v必须经过的边的个数 如果把强联通分量都缩成一个点以后,每个点内部的边都是可替代的:而又因为这是个无向图,缩完点以后就是棵树,跑两遍dfs求直径即 ...
- [CF1000E]We Need More Bosses
题目大意:给一张无向图,要求找一对$s$和$t$,使得其路径上的割边是最多的,输出其数量. 题解:把边双缩点以后求树的直径. 卡点:无 C++ Code: #include <cstdio> ...
- 题解 CF1000E 【We Need More Bosses】
这道题绝不是紫题... 题目的意思其实是让你求一个无向无重边图的直径. 对于求直径的问题我们以前研究过树的直径,可以两遍dfs或者两边bfs解决. 对于图显然不能这样解决,因为图上两点之间的简单路径不 ...
- 边双联通分量缩点+树的直径——cf1000E
题意理解了就很好做 题意:给一张无向图,任意取两个点s,t,s->t的路径上必经边数量为k 求这样的s,t,使得k最大 #include<bits/stdc++.h> #define ...
随机推荐
- MySQL8.0关系数据库基础教程(三)-select语句详解
1 查询指定字段 在 employee 表找出所有员工的姓名.性别和电子邮箱. SELECT 表示查询,随后列出需要返回的字段,字段间逗号分隔 FROM 表示要从哪个表中进行查询 分号为语句结束符 这 ...
- TCP、UDP 协议的区别
TCP 面向连接 可靠 传输形式:字节流 传输效率:慢 所需资源:多 首部字节:20-60 应用场景:要求通讯数据可靠(如文件传输.邮件传输) UPD 无连接 不可靠 传输形式:数据报文段 传输效率: ...
- yukongDSRM账户安全防护
一.DSRM简介 1.DSRM(Diretcory Service Restore Mode,目录服务恢复模式)是windows域环境中域控制器的安全模式启动选项.域控制器的本地管理员账户也就是DSR ...
- javascript console对象 常用的方法
console对象 var o = {name:'3'} console.assert(o.name === '3', "name 的值应该为:string 3"); consol ...
- Linux相关知识笔记
Quagga要在linux下编译并配置运行,所有,学习一点linux的基础知识. 安装的Ubuntu,用户名linux,密码1 使能Ubuntu的IP转发功能,需要修改etc/sysctl.conf和 ...
- 不重启 清空tomcat日志
1.重定向方法清空文件 [root@localhost logs]# du -h catalina.out 查看文件大小17M catalina.out[root@localhost logs]# ...
- make: *** No targets specified and no makefile found. Stop.错误
# make make: *** No targets specified and no makefile found. Stop. # yum install gcc gcc-c++ gcc-g77 ...
- Pch文件预编译
因为项目用到Pch文件链接宏变量,因而稍作研究怎样使用,define宏变量其实并不合适 ,static const才最适合 Pch文件听说是上古世纪存在的文件,主要是用来全局预编译文件统一在一个出口, ...
- 来去学习之---KMP算法--next计算过程
一.概述 KMP算法是一种字符串匹配算法,比如现有字符串 T:ABCDABCDABCDCABCDABCDE, P:ABCDABCDE P字符串对应的next值:[0,0,0,0,1,2,3,4,0] ...
- localStorage 存储
localStorage 的优势 localStorage 拓展了 cookie 的 4K 限制. localStorage 会可以将第一次请求的数据直接存储到本地,这个相当于一个 5M 大小的针对于 ...