论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification
Introduction
该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网络(孪生神经网络),并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示。
Method
(1)特征提取架构:
第一层:卷积神经网络,提取每个行人的外貌特征向量;
第二层:循环神经网络,让网络更好的提取时空信息;
第三层:时间池,让网络将不同长度的视频序列总结为一个特征向量.
Siamese网络:通过训练,将来自同一个人的视频特征变得更近,将来自不同人的视频特征变的更远.
(2)输入:
包括两部分:光流(optical flow)、颜色通道(colour channel)
光流对行人的步态等动作线索进行编码,而颜色通道对行人的样貌和穿着进行编码.
(3)卷积神经网络:
对每一个步行时刻(time-step,可以理解为组成步态周期的一个单元)进行卷积神经网络处理,把输入的图片记为 x,则输出为向量 f = C(x).
卷积神经网络架构:
激活函数采用tanh,池化层采用最大maxpool,即:
s = s(1), ..., s(T) 表示为一个视频序列,T 为视频序列的长度,s(t) 为在时间 t 时的图片帧.
每个图片都要经过CNN来产生一个特征向量,即 f(t) = C(s(t)),其中 f(t) 是CNN最后层的向量表示.
(4)递归神经网络:基础介绍【传送门】
f(t) 表示 s(t) 在CNN最后层的向量表示,则RNN输出为:
o(t) 规格:e * 1
f(t) 规格:N * 1
r(t-1) 规格:e * 1
Wi 规格:e * N
Ws 规格:e * e
f(t) 包含当前时刻的图像信息,r(t-1) 包含上一时刻的图像信息,对所有时刻的特征使用全连接层. r(t) 初始为零向量.
(5)时间池:
虽然RNNs可以捕获时间信息,但依然存在不足:
① RNN的输出偏向于较后的时刻;
② 时间序列分析通常需要在不同的时间尺度下提取信息(如语音识别中,提取的尺度包括:音节、单词、短语、句子、对话等).
解决方法:增加一个时间池化层(temporal pooling layer),该层从所有时刻收集信息,避免了偏向后面时刻的问题.
在时间池化层中,所有时刻RNN后的输出为{o(1), ..., o(T)},提出两个方法:
① 平均池化层:
② 最大池化层:(即向量的每一个元素都是从 T 个时刻中的对应位置挑选出的最大值)
(6)训练策略:
① 孪生神经网络:基础知识【传送门】
给出一对视频序列 (si, sj),每个序列都通过CNN、RNN提取出特征向量,即 vi = R(si),vj = R(sj),孪生神经网络的训练目标为:(采用的距离为欧式距离)
② 识别验证:
预测特征向量 v 是第 q 个身份的概率为:
一共有 K 个可能身份,Wc 和 Wk 表示权重矩阵 W 的第 c 和 k 列.
③ 损失函数:
Experiments
(1)实验设置:
① 数据集 :iLIDS-VID、PRID-2011,一半用于训练,一半用于测试,运行10次计入平均值.
② 参数设置:孪生神经网络中 m = 2,特征空间维度 e = 128,梯度下降学习率 α = 1e-3,batchsize = 1,epochs = 300.
③ 硬件条件:GTX-980 GPU(运行1天)
④ 数据预处理:采用了裁剪和镜像的形式对数据进行增强. 将图像转为YUV色域,每个颜色通道被标准化为零均值和单位方差,使用Lucas-Kanade算法【传送门】计算每对帧之间的水平和垂直光流通道. 光流通道正规化为[-1,1]. 第一层神经网络的输入有5层通道,其中3层为颜色通道,2层为光流通道.
(2)实验结果:
① 比较了有无循环连接、有无光流特征情况下的实验结果.
② 比较时间池中使用平均池化、最大池化和基准方法(其它参考文献中的方法)的效果.
③ 比较不同视频序列长度的效果.
④ 与其它方法的对比.
⑤ 跨数据集测试,在数据集A训练,但在数据集B测试.
论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification的更多相关文章
- 论文阅读笔记十八:ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(CVPR2016)
论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet ...
- 论文阅读笔记十五:Pyramid Scene Parsing Network(CVPR2016)
论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorfl ...
- 论文阅读笔记十:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (DeepLabv2)(CVPR2016)
论文链接:https://arxiv.org/pdf/1606.00915.pdf 摘要 该文主要对基于深度学习的分割任务做了三个贡献,(1)使用空洞卷积来进行上采样来进行密集的预测任务.空洞卷积可以 ...
- 论文阅读笔记十六:DeconvNet:Learning Deconvolution Network for Semantic Segmentation(ICCV2015)
论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow-Decon ...
- 论文阅读笔记十四:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation(CVPR2015)
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类 ...
- 论文阅读笔记十九:PIXEL DECONVOLUTIONAL NETWORKS(CVPR2017)
论文源址:https://arxiv.org/abs/1705.06820 tensorflow(github): https://github.com/HongyangGao/PixelDCN 基于 ...
- 论文阅读笔记十二:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(DeepLabv3+)(CVPR2018)
论文链接:https://arxiv.org/abs/1802.02611 tensorflow 官方实现: https: //github.com/tensorflow/models/tree/ma ...
- 论文阅读笔记五:U-Net: Convolutional Networks for Biomedical Image Segmentation(CVPR2015)
前面介绍了两个文本检测的网络,分别为RRCNN和CTPN,接下来鄙人会介绍语义分割的一些经典网络,同样也是论文+代码实现的过程,这里记录一下自己学到的东西,首先从论文下手吧. 英文论文原文地址:htt ...
- 论文阅读笔记七:Structure Inference Network:Object Detection Using Scene-Level Context and Instance-Level Relationships(CVPR2018)
结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong ...
- 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...
随机推荐
- Nginx总结(八)Nginx服务器的日志管理及配置
前面讲了如何配置Nginx虚拟主机,大家可以去这里看看nginx系列文章:https://www.cnblogs.com/zhangweizhong/category/1529997.html 今天要 ...
- 20191230--python学习第一天(补)
1.py第一个脚本 打开电脑终端,功能键+R 输入命令:解释器路径+脚本路径(建议.py后缀) 2.编码 (1)初始编码 ascii,英文,8为表示一个东西,2**8 8位 = 1字节 unicod ...
- python之基础中的基础(二)
1.字典 创建字典,alien_0={'color':'green','points':5}其中由一个又一个的“键-值”对组成. 访问键-值对相应的值,print(alien_0['color']), ...
- Pandas常用功能
在使用Pandas之前,需要导入pandas库 import pandas as pd #pd作为pandas的别名 常用功能如下: 代码 功能1 .DataFrame() 创建一个DataFr ...
- 【二】、UML基础知识——图图解乾坤
[二].UML基础知识 UML概述 UML是一个通用的可视化建模语言,不同于编程语言,它通过一些标准的图形符号和文字来对系统进行建模.用于对软件进行描述.可视化处理.构建软件系统的文档.是一套总结了以 ...
- Apache Log4j 反序列化代码执行(CVE-2019-17571) 漏洞分析
Apache Log4j 漏洞分析 仅用于研究漏洞原理,禁止用于非法用途,后果自负!!! CVE-2019-17571 漏洞描述 Log4j是美国阿帕奇(Apache)软件基金会的一款基于Java的开 ...
- 【React Native错误集】* What went wrong: Execution failed for task ':app:installDebug'.
错误1:* What went wrong: Execution failed for task ':app:installDebug'. > com.android.builder.testi ...
- Windwos应急响应和系统加固(1)——Windwos操作系统版本介绍
Windwos操作系统版本介绍 1. Micorsoft Windows XP ·Microsoft官方发布时间以及终止提供服务时间:2001.10.25-2014.4.8 产生漏洞:MS08 ...
- system.run
客户端开启了remotecommand后可以在server调用该命令在agent上执行一些命令 命令中有逗号 zabbix_get -s xxx.xxx.xxx.xxx -k "system ...
- PMP-番外篇-PMP工具与技术目录
########################################################### 这里先总结所有工具和技术,让大家有一个整体的概念. 也可以当作一个工具和技术查询 ...