Introduction

该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网络(孪生神经网络),并结合了递归与外貌数据的时间池,来学习每个行人视频序列的特征表示。

Method

(1)特征提取架构:

第一层:卷积神经网络,提取每个行人的外貌特征向量;

第二层:循环神经网络,让网络更好的提取时空信息;

第三层:时间池,让网络将不同长度的视频序列总结为一个特征向量.

Siamese网络:通过训练,将来自同一个人的视频特征变得更近,将来自不同人的视频特征变的更远.

(2)输入:

包括两部分:光流(optical flow)、颜色通道(colour channel)

光流对行人的步态等动作线索进行编码,而颜色通道对行人的样貌和穿着进行编码.

(3)卷积神经网络:

对每一个步行时刻(time-step,可以理解为组成步态周期的一个单元)进行卷积神经网络处理,把输入的图片记为 x,则输出为向量 f = C(x).

卷积神经网络架构:

激活函数采用tanh,池化层采用最大maxpool,即:

s = s(1), ..., s(T) 表示为一个视频序列,T 为视频序列的长度,s(t) 为在时间 t 时的图片帧.

每个图片都要经过CNN来产生一个特征向量,即 f(t) = C(s(t)),其中 f(t) 是CNN最后层的向量表示.

(4)递归神经网络:基础介绍【传送门

f(t) 表示 s(t) 在CNN最后层的向量表示,则RNN输出为:

o(t) 规格:e * 1

f(t) 规格:N * 1

r(t-1) 规格:e * 1

Wi 规格:e * N

Ws 规格:e * e

f(t) 包含当前时刻的图像信息,r(t-1) 包含上一时刻的图像信息,对所有时刻的特征使用全连接层. r(t) 初始为零向量.

(5)时间池:

虽然RNNs可以捕获时间信息,但依然存在不足:

① RNN的输出偏向于较后的时刻;

② 时间序列分析通常需要在不同的时间尺度下提取信息(如语音识别中,提取的尺度包括:音节、单词、短语、句子、对话等).

解决方法:增加一个时间池化层(temporal pooling layer),该层从所有时刻收集信息,避免了偏向后面时刻的问题.

在时间池化层中,所有时刻RNN后的输出为{o(1), ..., o(T)},提出两个方法:

① 平均池化层:

② 最大池化层:(即向量的每一个元素都是从 T 个时刻中的对应位置挑选出的最大值)

(6)训练策略:

① 孪生神经网络:基础知识【传送门

给出一对视频序列 (si, sj),每个序列都通过CNN、RNN提取出特征向量,即 vi = R(si),vj = R(sj),孪生神经网络的训练目标为:(采用的距离为欧式距离)

② 识别验证:

预测特征向量 v 是第 q 个身份的概率为:

一共有 K 个可能身份,Wc 和 Wk 表示权重矩阵 W 的第 c 和 k 列.

③ 损失函数:

Experiments

(1)实验设置:

① 数据集 :iLIDS-VID、PRID-2011,一半用于训练,一半用于测试,运行10次计入平均值.

② 参数设置:孪生神经网络中 m = 2,特征空间维度 e = 128,梯度下降学习率 α = 1e-3,batchsize = 1,epochs = 300.

③ 硬件条件:GTX-980 GPU(运行1天)

④ 数据预处理:采用了裁剪和镜像的形式对数据进行增强. 将图像转为YUV色域,每个颜色通道被标准化为零均值和单位方差,使用Lucas-Kanade算法【传送门】计算每对帧之间的水平和垂直光流通道. 光流通道正规化为[-1,1]. 第一层神经网络的输入有5层通道,其中3层为颜色通道,2层为光流通道.

(2)实验结果:

① 比较了有无循环连接、有无光流特征情况下的实验结果.

② 比较时间池中使用平均池化、最大池化和基准方法(其它参考文献中的方法)的效果.

③ 比较不同视频序列长度的效果.

④ 与其它方法的对比.

⑤ 跨数据集测试,在数据集A训练,但在数据集B测试.

论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification的更多相关文章

  1. 论文阅读笔记十八:ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(CVPR2016)

    论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet ...

  2. 论文阅读笔记十五:Pyramid Scene Parsing Network(CVPR2016)

    论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorfl ...

  3. 论文阅读笔记十:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (DeepLabv2)(CVPR2016)

    论文链接:https://arxiv.org/pdf/1606.00915.pdf 摘要 该文主要对基于深度学习的分割任务做了三个贡献,(1)使用空洞卷积来进行上采样来进行密集的预测任务.空洞卷积可以 ...

  4. 论文阅读笔记十六:DeconvNet:Learning Deconvolution Network for Semantic Segmentation(ICCV2015)

    论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow-Decon ...

  5. 论文阅读笔记十四:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation(CVPR2015)

    论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类 ...

  6. 论文阅读笔记十九:PIXEL DECONVOLUTIONAL NETWORKS(CVPR2017)

    论文源址:https://arxiv.org/abs/1705.06820 tensorflow(github): https://github.com/HongyangGao/PixelDCN 基于 ...

  7. 论文阅读笔记十二:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation(DeepLabv3+)(CVPR2018)

    论文链接:https://arxiv.org/abs/1802.02611 tensorflow 官方实现: https: //github.com/tensorflow/models/tree/ma ...

  8. 论文阅读笔记五:U-Net: Convolutional Networks for Biomedical Image Segmentation(CVPR2015)

    前面介绍了两个文本检测的网络,分别为RRCNN和CTPN,接下来鄙人会介绍语义分割的一些经典网络,同样也是论文+代码实现的过程,这里记录一下自己学到的东西,首先从论文下手吧. 英文论文原文地址:htt ...

  9. 论文阅读笔记七:Structure Inference Network:Object Detection Using Scene-Level Context and Instance-Level Relationships(CVPR2018)

    结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong ...

  10. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

随机推荐

  1. 【人类观察所】"当代人"正经历的生活

    一."即时满足"的互联网 "轻微烦躁,偶尔自燃,当代生活多数时刻的心情基调." 如果你出生于上个世纪,应该能明白木心的<从前慢>里的 「从前的日色变 ...

  2. javascript 完全正确的数据库indexedDB

    //indexedDB var dbName = 'whx', version = '1', dbTableName = 'bbg', request, db, conCls, updateKey, ...

  3. TomCat控制台中文乱码及IDEA设置为UTF-8

    一.解决IDEA中的中文乱码 1.首先设置idea编辑器的编码: File-Setting设置如下 idea显示编码:windows默认用gbk所以idea显示默认为gbk编码,在 Help--Edi ...

  4. 配置ASA防火墙 远程管理方式

          受不了,asa和思科路由器 系统命令不一致,这一篇专门来写asa.      先看下版本 asa825# show version      Cisco Adaptive Security ...

  5. 授权认证(IdentityServer4)

    区别 OpenId: Authentication :认证 Oauth: Aurhorize :授权 输入账号密码,QQ确认输入了正确的账号密码可以登录 --->认证 下面需要勾选的复选框(获取 ...

  6. H5页面长按复制功能实现

    手机赚钱怎么赚,给大家推荐一个手机赚钱APP汇总平台:手指乐(http://www.szhile.com/),辛苦搬砖之余用闲余时间动动手指,就可以日赚数百元 默认情况下禁止了长按复制功能,要此功能需 ...

  7. 第二篇 Springboot mybatis generate根据数据库表自动生成实体类、Mapper和Mapper.xml

    源码链接:https://pan.baidu.com/s/1iP4UguBufHbcIEv4Ux4wDw 提取码:j6z9 目录结构如下:只需增加一个generatorConfig.xml文件和在po ...

  8. 静态存储SRAM设计

    SRAM即静态随机存取存储器.它是具有静止存取功能的内存,不需要刷新电路便能保存它内部存储的数据.在工业与科学用的很多子系统,汽车电子等等都用到了SRAM.现代设备中很多都嵌入了几千字节的SRAM.实 ...

  9. 2020年如何成为一个高级AVA架构师(50W~100W年薪)

    2020年如何成为一个高级AVA架构师(50W~100W年薪)

  10. Python——捕获异常

    一.什么是异常 """异常:错误,bug处理异常:尝试执行某句可能出现异常的语句, 若出错则用正确的代码去替代. try: 可能发生错误的代码except: 如果出现异常 ...