Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given.
You are to find the shortest possible regular brackets sequence, that
contains the given character sequence as a subsequence. Here, a string
a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if
there exist such indices 1 = i1 < i2 < ... < in = m, that aj =
bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(',
')', '[' and ']') that are situated on a single line without any other
characters among them.

Output

Write to the output file a single line that contains some regular
brackets sequence that has the minimal possible length and contains the
given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:给你一个不完整的括号序列,要求你添加最少的括号,使其可以构成一个左右互相匹配的完整的序列。
思路分析:开始想了个贪心,但是是不对
    正解是区间 dp,dp[i][j]表示区间 i - j 内添加最小数量的括号可以使其匹配,然后在转移的过程中判断一下当前区间的括号是否可以匹配上,如果可以此时的值则等于其内部区间的值,否则则在加一层 for去判断
    输出的地方采用递归的方式去输出,比较经典的一个题
代码示例:
char s[105];
int dp[105][105], path[105][105]; void print(int l, int r){
if (l > r) return; if (l == r){
if (s[l] == '(' || s[l] == ')') printf("()");
if (s[l] == '[' || s[l] == ']') printf("[]");
return;
} if (path[l][r] == -1){
putchar(s[l]);
print(l+1, r-1);
putchar(s[r]);
}
else{
print(l, path[l][r]);
print(path[l][r]+1, r);
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); while(gets(s+1) != NULL){
int n = strlen(s+1);
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int len = 2; len <= n; len++){ // 区间长度
for(int i = 1; i <= n; i++){
int j = i+len-1;
if (j > n) break;
dp[i][j] = inf;
if ((s[i]=='('&&s[j]==')') || (s[i]=='['&&s[j]==']')){
dp[i][j] = dp[i+1][j-1];
path[i][j] = -1;
}
for(int k = i; k < j; k++){
if (dp[i][k]+dp[k+1][j] < dp[i][j]){
dp[i][j] = dp[i][k]+dp[k+1][j];
path[i][j] = k;
}
}
// printf("+++ %d %d %d \n", i, j, dp[i][j]);
}
}
print(1, n);
//printf("%d\n", dp[1][n]);
printf("\n");
}
return 0;
}
/*
([(]
*/

区间dp - 括号匹配并输出方案的更多相关文章

  1. 区间dp 括号匹配问题

    这道题目能用区间dp来解决,是因为一个大区间的括号匹配数是可以由小区间最优化选取得到(也就是满足最优子结构) 然后构造dp 既然是区间类型的dp 一般用二维 我们定义dp[i][j] 表示i~j这个区 ...

  2. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  3. 区间dp括号匹配

    POJ2955 匹配则加一,不需要初始化 //#include<bits/stdc++.h> #include<iostream> #include<cstdio> ...

  4. Codeforces 5C Longest Regular Bracket Sequence(DP+括号匹配)

    题目链接:http://codeforces.com/problemset/problem/5/C 题目大意:给出一串字符串只有'('和')',求出符合括号匹配规则的最大字串长度及该长度的字串出现的次 ...

  5. poj2955括号匹配 区间DP

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5424   Accepted: 2909 Descript ...

  6. 括号匹配 区间DP (经典)

    描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来 ...

  7. poj 2955 括号匹配 区间dp

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6033   Accepted: 3220 Descript ...

  8. [NYIST15]括号匹配(二)(区间dp)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=15 经典区间dp,首先枚举区间的大小和该区间的左边界,这时右边界也可计算出来.首先初 ...

  9. NYOJ 题目15 括号匹配(二)(区间DP)

    点我看题目 题意 : 中文题不详述. 思路 : 本来以为只是个小模拟,没想到是个区间DP,还是对DP不了解. DP[i][j]代表着从字符串 i 位置到 j 位置需要的最小括号匹配. 所以初始化的DP ...

随机推荐

  1. Python--day41--线程池--python标准模块concurrent.futures

    1,线程池代码示例:(注:进程池的话只要将以下代码中的ThreadPoolExecutor替换成ProcessPoolExecutor即可,这里不演示) import time from concur ...

  2. springboot aop的使用 学习总结

    版权声明:本文为博主武伟峰原创文章,转载请注明地址http://blog.csdn.net/tianyaleixiaowu. aop是spring的两大功能模块之一,功能非常强大,为解耦提供了非常优秀 ...

  3. python基础七之copy

    浅拷贝 没有嵌套,则copy后完全不同,有嵌套,则copy后本体不同,嵌套相同. l1 = [1, 2, [4, 5, 6], 3] l2 = l1.copy() print(l1 is l2) # ...

  4. Educational Codeforces Round 54 (Rated for Div. 2) D Edge Deletion (SPFA + bfs)

    题目大意:给定你一个包含n个点m条边的无向图,现在最多在图中保留k条边,问怎么删除多的边,使得图中良好的节点数最多,求出保留在图中的边的数量和编号. 良好的节点定义为:删除某条边后该点到点1的最短距离 ...

  5. Total Commander 显示文件包含文件名扩展

    在默认的 Total Commander 是分开文件名和文件扩展,如果想要让文件名同时显示扩展,可以通过设置合并文件名和扩展两列 点击配置,在选项的制表修改显示 How to configure To ...

  6. dotnet core 使用 CoreRT 将程序编译为 Native 程序

    现在微软有一个开源项目 CoreRT 能通过将托管的 .NET Core 编译为单个无依赖的 Native 程序 这个项目现在还没发布,但是能尝试使用,可以带来很多的性能提升 使用 CoreRT 发布 ...

  7. <Standard Template Library>标准模板库专项复习总结(一)

    看了看博客园的申请时间也一年多了...想想自己一年多以来一直处于各种划水状态,现在又要面临ACM的冲击... 还是要抓紧时间赶紧复习一下了- -毕竟校园新生赛还是有奖金的.. 1.栈 先进后出(LIF ...

  8. 【20.51%】【codeforces 610D】Vika and Segments

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. destoon自定义文件的伪静态地址优化

    destoon自定义文件的伪静态优化 destoon给出了一个自定义文件传参的方式 在/include/global.func.php 有个rewirte函数来处理 目前的处理方式:index.php ...

  10. 027.MFC_映射消息

    映射消息MFC中的消息映射宏 DECLARE_MESSAGE_MAP BEGIN_MEASSAGE_MAP END_MESSAGE_MAP向导自动映射消息手动添加映射消息 MFC会帮我们自动映射大部分 ...