Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given.
You are to find the shortest possible regular brackets sequence, that
contains the given character sequence as a subsequence. Here, a string
a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if
there exist such indices 1 = i1 < i2 < ... < in = m, that aj =
bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(',
')', '[' and ']') that are situated on a single line without any other
characters among them.

Output

Write to the output file a single line that contains some regular
brackets sequence that has the minimal possible length and contains the
given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

题意:给你一个不完整的括号序列,要求你添加最少的括号,使其可以构成一个左右互相匹配的完整的序列。
思路分析:开始想了个贪心,但是是不对
    正解是区间 dp,dp[i][j]表示区间 i - j 内添加最小数量的括号可以使其匹配,然后在转移的过程中判断一下当前区间的括号是否可以匹配上,如果可以此时的值则等于其内部区间的值,否则则在加一层 for去判断
    输出的地方采用递归的方式去输出,比较经典的一个题
代码示例:
char s[105];
int dp[105][105], path[105][105]; void print(int l, int r){
if (l > r) return; if (l == r){
if (s[l] == '(' || s[l] == ')') printf("()");
if (s[l] == '[' || s[l] == ']') printf("[]");
return;
} if (path[l][r] == -1){
putchar(s[l]);
print(l+1, r-1);
putchar(s[r]);
}
else{
print(l, path[l][r]);
print(path[l][r]+1, r);
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); while(gets(s+1) != NULL){
int n = strlen(s+1);
memset(dp, 0, sizeof(dp));
for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int len = 2; len <= n; len++){ // 区间长度
for(int i = 1; i <= n; i++){
int j = i+len-1;
if (j > n) break;
dp[i][j] = inf;
if ((s[i]=='('&&s[j]==')') || (s[i]=='['&&s[j]==']')){
dp[i][j] = dp[i+1][j-1];
path[i][j] = -1;
}
for(int k = i; k < j; k++){
if (dp[i][k]+dp[k+1][j] < dp[i][j]){
dp[i][j] = dp[i][k]+dp[k+1][j];
path[i][j] = k;
}
}
// printf("+++ %d %d %d \n", i, j, dp[i][j]);
}
}
print(1, n);
//printf("%d\n", dp[1][n]);
printf("\n");
}
return 0;
}
/*
([(]
*/

区间dp - 括号匹配并输出方案的更多相关文章

  1. 区间dp 括号匹配问题

    这道题目能用区间dp来解决,是因为一个大区间的括号匹配数是可以由小区间最优化选取得到(也就是满足最优子结构) 然后构造dp 既然是区间类型的dp 一般用二维 我们定义dp[i][j] 表示i~j这个区 ...

  2. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  3. 区间dp括号匹配

    POJ2955 匹配则加一,不需要初始化 //#include<bits/stdc++.h> #include<iostream> #include<cstdio> ...

  4. Codeforces 5C Longest Regular Bracket Sequence(DP+括号匹配)

    题目链接:http://codeforces.com/problemset/problem/5/C 题目大意:给出一串字符串只有'('和')',求出符合括号匹配规则的最大字串长度及该长度的字串出现的次 ...

  5. poj2955括号匹配 区间DP

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5424   Accepted: 2909 Descript ...

  6. 括号匹配 区间DP (经典)

    描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来 ...

  7. poj 2955 括号匹配 区间dp

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6033   Accepted: 3220 Descript ...

  8. [NYIST15]括号匹配(二)(区间dp)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=15 经典区间dp,首先枚举区间的大小和该区间的左边界,这时右边界也可计算出来.首先初 ...

  9. NYOJ 题目15 括号匹配(二)(区间DP)

    点我看题目 题意 : 中文题不详述. 思路 : 本来以为只是个小模拟,没想到是个区间DP,还是对DP不了解. DP[i][j]代表着从字符串 i 位置到 j 位置需要的最小括号匹配. 所以初始化的DP ...

随机推荐

  1. Vue之webpack的entry和output

    一.文件结构 二.index.html <!DOCTYPE html> <html lang="en"> <head> <meta cha ...

  2. P1079 好朋友

    题目描述 小可可和所有其他同学的手腕上都戴有一个射频识别序列号码牌,这样老师就可以方便的计算出他们的人数.很多同学都有一个"好朋友" .如果 A 的序列号的约数之和恰好等于B 的序 ...

  3. 如何通过命令行 msbuild 编译项目

    本文告诉大家如何通过 msbuild 编译一个项目,通过命令行编译可以输出更多的编译信息,可以用来调试自己写的编译相关方法,可以看到是哪个文件编译失败 在开始菜单可以找到 VisualStudio 的 ...

  4. POJ 2778 DNA Sequence (ac自动机+矩阵快速幂)

    DNA Sequence Description It's well known that DNA Sequence is a sequence only contains A, C, T and G ...

  5. RocketMQ各组件介绍

    Rocket 架构主要分为4部分: Producer 消息发布者,支持分布式集群部署.Produer 通过 MQ 负载均衡模块选择相应 Broker 中的 queue 进行消息投递,投递过程支持快速失 ...

  6. koa2入门--03.koa中间件以及中间件执行流程

    //中间件:先访问app的中间件的执行顺序类似嵌套函数,由外到内,再由内到外 //应用级中间件 const koa = require('koa'); var router = require('ko ...

  7. POJ2763 Housewife Wind 树链剖分 边权

    POJ2763 Housewife Wind 树链剖分 边权 传送门:http://poj.org/problem?id=2763 题意: n个点的,n-1条边,有边权 修改单边边权 询问 输出 当前 ...

  8. Windows 服务安装与卸载 (通过 installutil.exe)

    1. 安装 安装 .NET Framework ; 新建文本文件,重命名为 ServiceInstall.bat,将 ServiceInstall.bat 的内容替换为: C:\\Windows\\M ...

  9. Team Foundation Server 2015使用教程【9】:tfs用户账号切换

  10. KEIL5.11安装小结

    一.注意点 1.安装路径不能带中文,必须是英文路径 2.安装目录不能跟 51 的 KEIL 或者 KEIL4 冲突,三者目录必须分开 3.KEIL5 不像 KEIL4 那样自带了很多厂商的 MCU 型 ...