内核编程的一个普通模式包括在当前线程之外初始化某个动作, 接着等待这个动作结束. 这个动作可能是创建一个新内核线程或者用户空间进程, 对一个存在着的进程的请求, 或 者一些基于硬件的动作. 在这些情况中, 很有诱惑去使用一个旗标来同步 2 个任务, 使 用这样的代码:

struct semaphore sem; init_MUTEX_LOCKED(&sem); start_external_task(&sem); down(&sem);

外部任务可以接着调用 up(??sem), 在它的工作完成时.

事实证明, 这种情况旗标不是最好的工具. 正常使用中, 试图加锁一个旗标的代码发现旗 标几乎在所有时间都可用; 如果对旗标有很多竞争, 性能会受损并且加锁方案需要重新审 视. 因此旗标已经对"可用"情况做了很多的优化. 当用上面展示的方法来通知任务完成, 然而, 调用 down 的线程将几乎是一直不得不等待; 因此性能将受损. 旗标还可能易于处 于一个( 困难的 ) 竞争情况, 如果它们表明为自动变量以这种方式使用时. 在一些情况 中, 旗标可能在调用 up 的进程用完它之前消失.

这些问题引起了在 2.4.7 内核中增加了 "completion" 接口. completion 是任务使用的 一个轻量级机制: 允许一个线程告诉另一个线程工作已经完成. 为使用 completion, 你 的代码必须包含 <linux/completion.h>. 一个 completion 可被创建, 使用:

DECLARE_COMPLETION(my_completion);

或者, 如果 completion 必须动态创建和初始化: struct completion my_completion;            /* ... */

init_completion(&my_completion); 等待 completion 是一个简单事来调用:

void wait_for_completion(struct completion *c);

注意这个函数进行一个不可打断的等待. 如果你的代码调用 wait_for_completion 并且 没有人完成这个任务, 结果会是一个不可杀死的进程.[18]18

另一方面, 真正的 completion 事件可能通过调用下列之一来发出: void complete(struct completion *c);

void complete_all(struct completion *c);

如果多于一个线程在等待同一个 completion 事件, 这 2 个函数做法不同. complete 只 唤醒一个等待的线程, 而 complete_all 允许它们所有都继续. 在大部分情况下, 只有一 个等待者, 这 2 个函数将产生一致的结果.

一个 completion 正常地是一个单发设备; 使用一次就放弃. 然而, 如果采取正确的措施 重新使用 completion 结构是可能的. 如果没有使用 complete_all, 重新使用一个 completion 结构没有任何问题, 只要对于发出什么事件没有模糊. 如果你使用 complete_all, 然而, 你必须在重新使用前重新初始化 completion 结构. 宏定义:

INIT_COMPLETION(struct completion c); 可用来快速进行这个初始化.

作为如何使用 completion 的一个例子, 考虑 complete 模块, 它包含在例子源码里. 这 个模块使用简单的语义定义一个设备: 任何试图从一个设备读的进程将等待(使用 wait_for_completion)直到其他进程向这个设备写. 实现这个行为的代码是:

DECLARE_COMPLETION(comp);

ssize_t complete_read (struct file *filp, char user *buf, size_t count, loff_t *pos)

{

printk(KERN_DEBUG "process %i (%s) going to sleep\n",current->pid, current->comm);

wait_for_completion(&comp);

printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm); return 0; /* EOF */

}

ssize_t complete_write (struct file *filp, const char user *buf, size_t count, loff_t *pos)

在本书编写时, 添加可中断版本的补丁已经流行但是还没有合并到主线中.

printk(KERN_DEBUG
"process %i (%s) awakening the readers...\n", current-

>pid,
current->comm); complete(&comp);

return count; /* succeed, to avoid retrial */

}

有多个进程同时从这个设备"读"是有可能的. 每个对设备的写将确切地使一个读操作完成, 但是没有办法知道会是哪个.

completion 机制的典型使用是在模块退出时与内核线程的终止一起. 在这个原型例子里, 一些驱动的内部工作是通过一个内核线程在一个 while(1) 循环中进行的. 当模块准备好 被清理时, exit 函数告知线程退出并且等待结束. 为此目的, 内核包含一个特殊的函数 给线程使用:

void
complete_and_exit(struct completion *c, long retval);

linux Completions 机制的更多相关文章

  1. Linux模块机制浅析

    Linux模块机制浅析   Linux允许用户通过插入模块,实现干预内核的目的.一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析. 模块的Hello World! ...

  2. android & Linux uevent机制

    Linux uevent机制 Uevent是内核通知android有状态变化的一种方法,比如USB线插入.拔出,电池电量变化等等.其本质是内核发送(可以通过socket)一个字符串,应用层(andro ...

  3. 利用linux信号机制调试段错误(Segment fault)

    在实际开发过程中,大家可能会遇到段错误的问题,虽然是个老问题,但是其带来的隐患是极大的,只要出现一次,程序立即崩溃中止.如果程序运行在PC中,segment fault的调试相对比较方便,因为可以通过 ...

  4. Linux 内存机制详解宝典

    Linux 内存机制详解宝典 在linux的内存分配机制中,优先使用物理内存,当物理内存还有空闲时(还够用),不会释放其占用内存,就算占用内存的程序已经被关闭了,该程序所占用的内存用来做缓存使用,对于 ...

  5. Linux Namespaces机制——实现

    转自:http://www.cnblogs.com/lisperl/archive/2012/05/03/2480573.html 由于Linux内核提供了PID,IPC,NS等多个Namespace ...

  6. Linux Namespaces机制

    转自:http://www.cnblogs.com/lisperl/archive/2012/05/03/2480316.html Linux Namespaces机制提供一种资源隔离方案.PID,I ...

  7. Linux分页机制之概述--Linux内存管理(六)

    1 分页机制 在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address). 很显然,这个页表是需要常驻内 ...

  8. [转帖]Linux分页机制之分页机制的演变--Linux内存管理(七)

    Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatiem ...

  9. [转帖]Linux分页机制之概述--Linux内存管理(六)

    Linux分页机制之概述--Linux内存管理(六) 2016年09月01日 19:46:08 JeanCheng 阅读数:5491 标签: linuxkernel内存管理分页架构更多 个人分类: ┈ ...

随机推荐

  1. 递归系列——树型JSON数据转换问题

    JSON数据转换方式: 1.标准结构=>简单结构 var root = { id: 'root', children: [ { id: "1", children: [ { ...

  2. class介绍

    ES6引入了Class(类)这个概念,作为对象的模板.通过class关键字,可以定义类.基本上,ES6的class可以看作只是一个语法糖,它的绝大部分功能,ES5都可以做到,新的class写法只是让对 ...

  3. 【JZOJ4919】【NOIP2017提高组模拟12.10】神炎皇

    题目描述 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 数据范围 对于100%的数 ...

  4. c# 日期函数

    DateTime dt = DateTime.Now;Label1.Text = dt.ToString();//2005-11-5 13:21:25Label2.Text = dt.ToFileTi ...

  5. Directx11学习笔记【九】 3D渲染管线

    原文:Directx11学习笔记[九] 3D渲染管线 原文地址:http://blog.csdn.net/bonchoix/article/details/8298116 3D图形学研究的基本内容,即 ...

  6. 在 Linux Mint 19 上安装 zsh 和设置小键盘一步到位

    在 Linux Mint 19 上安装 zsh 和设置小键盘 安装 zsh 并设置 zsh 为默认 shell 安装 sudo apt install zsh 设置 zsh 为默认 shell,注意没 ...

  7. 学习Vue.js

    Vue.js官网 Vue.js官方教程 Vue.js教程 哔哩哔哩Vue.js教程 Vue.js百度百科

  8. js获取屏幕相关值

    <html><script>function a(){document.write("屏幕分辨率为:"+screen.width+"*" ...

  9. LeetCode73 Set Matrix Zeroes

    题目: Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.(Me ...

  10. @loj - 2674@ 「NOI2012」美食节

    目录 @description@ @solution@ @accepted code@ @details@ @description@ CZ 市为了欢迎全国各地的同学,特地举办了一场盛大的美食节. 作 ...