洛谷 2149 [SDOI2009]Elaxia的路线
题目描述
最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。
输入输出格式
输入格式:
第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。
输出格式:
一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)
输入输出样例
说明
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
Solution
分别以x1,y1,x2,y2为起点跑一遍最短路,然后找到所有既在x1,y1的最短路上,又在x2,y2的最短路上的边,重新建一个有向图,问题转化为了在DAG上求最长链
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#define nn 2011
#define mm 4000011
using namespace std;
int dis[4][nn],fir[nn],fi[nn],nx[mm],too[mm],v[mm],Q[nn],nxt[mm],fro[mm],len[nn],to[mm],w[mm],th[nn],in[nn],cnt,e,n;
struct node{
int wo,di;
bool operator<(const node&x)const{
return di>x.di;
}
}o;
priority_queue<node> q;
int read()
{
int ans=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();}
return ans*f;
}
void add(int a,int b,int c)
{
nxt[++e]=fir[a];fir[a]=e;to[e]=b;fro[e]=a;w[e]=c;
nxt[++e]=fir[b];fir[b]=e;to[e]=a;fro[e]=b;w[e]=c;
}
void addd(int a,int b,int c)
{
nx[++cnt]=fi[a];fi[a]=cnt;too[cnt]=b;v[cnt]=c;in[b]++;
}
void dijstra(int s,int x)
{
memset(dis[x],127,sizeof(dis[x]));
dis[x][s]=0;
q.push((node){s,0});
while(!q.empty())
{
o=q.top();q.pop();
for(int i=fir[o.wo];i;i=nxt[i])
if(dis[x][to[i]]>w[i]+o.di)
{
dis[x][to[i]]=w[i]+o.di;
q.push((node){to[i],dis[x][to[i]]});
}
}
}
bool onit(int a,int b,int l,int s,int t)
{
return dis[th[s]][a]+l+dis[th[t]][b]==dis[th[s]][t];
}
void topoo()
{
int h=1,t=0,o;
for(int i=1;i<=n;i++)
if(!in[i])
Q[++t]=i;
while(h<=t)
{
o=Q[h++];
for(int i=fi[o];i;i=nx[i])
{
len[too[i]]=max(len[too[i]],len[o]+v[i]);
if(--in[too[i]]==0)
Q[++t]=too[i];
}
}
}
int solve(int s1,int t1,int s2,int t2)
{
for(int i=1;i<=e;i++)
{
if(onit(fro[i],to[i],w[i],s1,t1)&&onit(fro[i],to[i],w[i],s2,t2))
addd(fro[i],to[i],w[i]);
}
topoo();
int ans=0;
for(int i=1;i<=n;i++)
if(len[i]>ans)
ans=len[i];
return ans;
}
int main()
{
int m,a,b,c,s1,s2,t1,t2,ans=0,da,db;
n=read();m=read();s1=read();t1=read();s2=read();t2=read();
for(int i=1;i<=m;i++)
{
a=read();b=read();c=read();
add(a,b,c);
}
th[s1]=0;th[t1]=1;th[s2]=2;th[t2]=3;
dijstra(s1,0);dijstra(t1,1);dijstra(s2,2);dijstra(t2,3);
ans=max(ans,solve(s1,t1,s2,t2));
cnt=0;
memset(fi,0,sizeof(fi));
memset(nx,0,sizeof(nx));
memset(in,0,sizeof(in));
memset(len,0,sizeof(len));
ans=max(ans,solve(s1,t1,t2,s2));
printf("%d",ans);
return 0;
}
洛谷 2149 [SDOI2009]Elaxia的路线的更多相关文章
- BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线
BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- 洛谷—— P2149 [SDOI2009]Elaxia的路线
https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- Luogu 2149 [SDOI2009]Elaxia的路线
感觉这题可以模板化. 听说spfa死了,所以要练堆优化dijkstra. 首先对$x_{1},y_{1},x_{2},y_{2}$各跑一遍最短路,然后扫一遍所有边看看是不是同时在两个点的最短路里面,如 ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
随机推荐
- Boost.Asio基础
http://www.voidcn.com/article/p-exkmmuyn-po.html http://www.voidcn.com/article/p-xnxiwkrf-po.html ht ...
- Binder对象死亡通知机制
本文參考<Android系统源码情景分析>,作者罗升阳. 一.Binder库(libbinder)代码: ~/Android/frameworks/base/libs/bin ...
- 将自己的代码托管到github - 秦时明月 - CSDN博客
步骤: 1.建立自己的github 2.安装github客户端,并配置身份 3.建立github项目 4.将github项目库下载到本地 5.提交本地代码到github 详细操作: 1.github网 ...
- ubuntu16安装python3.7
####################################################源码安装python,注意shell脚本第一行开头的要求#################### ...
- 阿里云杨敬宇:5G时代,边缘计算将发挥更大价值
“5G时代,边缘计算将发挥更大价值.”3月8日,阿里云边缘计算技术负责人杨敬宇向媒体表示,边缘计算作为5G时代的一项关键技术,未来将成为不可或缺的基础设施之一. 5G时代万物智联将真正成为现实,但对计 ...
- Yii 学习笔记
Yii常用执行SQL方法 ====================================================== ================================ ...
- C++学习笔记(2)---2.5 C++函数编译原理和成员函数的实现
转载自:http://c.biancheng.NET/cpp/biancheng/view/2996.html点击打开链接 从上节的例子可以看出,对象的内存模型中只保留了成员变量,除此之外没有任何其他 ...
- Python数据分析与展示[第二周]
matplotlib 有各种可视化的类构成 一般调用 matplotlib.pypolt 这个命令字库 相当于快捷方式 plt.plot(a) 只有一个一维列表 x轴充当列表索引 plt.ylabel ...
- oracle-Dbca数据库模板
数据库模板是用xml文件格式保存在本地磁盘上的数据库配置的定义. Dbca能够使用两种类型的模板:种子模板和非种子模板. 种子模板指含有定义信息和实际的数据文件与重做日志文件的模板定义. 种子模板的优 ...
- prestashop 首页轮播幻灯片图片修改
后台 -> Modules -> Modules 搜索 home(中文则搜幻灯片)