题面

考虑树形 \(\text{DP}\)。

设 \(dp_i\) 为使 \(i\) 变成叛徒的最大值,同时 \(dp_i\) 也是使 \(i\) 不变成叛徒的最小值。

然后考虑如何转移状态。

  • 如果 \(i\) 是叶子节点,那么 \(dp_i=1\);
  • 否则,设 \(size_i\) 表示 \(i\) 的子树大小,不难发现 \(dp_i=\max_{j\in son_i}\{\min\{dp_j,\frac{size_j}{size_i-1}\}\}\) 。

如果 \(size_i > k\) ,那么 \(ans = \max\{dp_i\}\)。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi
#define Max(x, y) ((x > y) ? x : y)
#define Min(x, y) ((x < y) ? x : y) using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} const int maxn = 500003; int n, k, fa[maxn], sz[maxn], tot, head[maxn], ver[maxn * 2], nxt[maxn * 2];
vector <int> son[maxn];
double dp[maxn], ans; void dfs1(int u, int f)
{
sz[u] = 1;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs1(v, u);
sz[u] += sz[v];
}
} inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;} void dfs(int u, int f)
{
if (sz[u] == 1) {dp[u] = 1.0; return;}
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs(v, u);
}
int len = son[u].size();
for (int i = 0; i < len; i+=1)
{
dp[u] = Max(dp[u], Min(dp[son[u][i]], 1.0 * sz[son[u][i]] / (sz[u] - 1)));
}
if (sz[u] > k) ans = max(ans, dp[u]);
} int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), k = gi();
for (int i = 1; i < n; i+=1)
{
fa[i + 1] = gi();
son[fa[i + 1]].push_back(i + 1);
add(i + 1, fa[i + 1]), add(fa[i + 1], i + 1);
}
dfs1(1, 0);
dfs(1, 0);
printf("%.10lf\n", ans);
return 0;
}

题解【洛谷P5958】[POI2017]Sabotaż的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  10. 题解 洛谷P2959 【[USACO09OCT]悠闲漫步The Leisurely Stroll】

    原题:洛谷P2959 不得不说这道题的图有点吓人,但实际上很多都没有用 通过题上说的“三岔路口”(对于每一个节点有三条连接,其中一条连接父节点,另外两条连接子节点)和数据,可以那些乱七八糟的路和牧场看 ...

随机推荐

  1. 快速读写模板(int)

    一.快速读入模板(int) inline int read(int x){ char ch=getchar(); int x=0,f=1; while(ch>='9'||ch<='0'){ ...

  2. RocketMQ幂等性问题

    什么是幂等性: 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同. 当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系 ...

  3. Git 的 .gitignore 配置说明 (C#)

    1.配置语法: 以斜杠“/”开头表示目录: 以星号“*”通配多个字符: 以问号“?”通配单个字符 以方括号“[]”包含单个字符的匹配列表: 以叹号“!”表示不忽略(跟踪)匹配到的文件或目录: 此外,g ...

  4. JavaScript自学笔记(2)---function a(){} 和 var a = function(){}的区别(javascript)

    function a(){} 和 var a = function(){}的区别: 学习做浮窗,看到别人的代码里有: window.onresize = function(){ chroX = doc ...

  5. stream重复Key的处理

    Map<String, List<Model>> modelMap = modelList .stream() .collect(Collectors .toMap(model ...

  6. 深度优先搜索DFS---最优子序列求和问题(1)

    题目: 给定N 个整数(可能有负数),从中选择 K个数,使得这 K个数之和恰好等于一个给定的整数 X:如果有多种方案,那么选择它们中元素平方和最大的一个.例如,从4个整数{ 2, 3, 3 ,4}中选 ...

  7. HTML5 canvas绘图基础(电子名片生成器源码)

    创建canvas <canvas id="myCanvas" class="canvas"> 您的浏览器不支持canvas </canvas& ...

  8. BZOJ 4238: 电压 DFS树

    分类讨论一下奇环和偶环的情况. code: #include <bits/stdc++.h> #define N 200006 #define setIO(s) freopen(s&quo ...

  9. qt creator源码全方面分析(1)

    目录介绍 首先我们对软件源代码根目录下的各个重要文件(夹)做一个简单的介绍,对整体有一个大概的了解. 下面对目录及其内容做一个大概的初步的介绍,后面我尽量按照目录顺序进行依次介绍,当然可能会有一些交叉 ...

  10. 洛谷P1551 亲戚

    洛谷P1551 亲戚 原题 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描述 规定:x和y是亲戚,y和z是 ...