poj 1279 Art Gallery (Half Plane Intersection)
还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积。其实就是把每一条边看作有向直线然后套用半平面交。这题在输入的时候应该用多边形的有向面积来判断输入的顺序是顺时针的还是逆时针的。
对于半平面交问题,要注意最后半平面返回的是多少个点。对于小于3个点的情况应该直接返回结果,避免计算过程中产生错误。
代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
} ;
template<class T> T sqr(T x) { return x * x;}
typedef Point Vec;
Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);}
Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);}
Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);}
Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} const double EPS = 1e-;
const double PI = acos(-1.0);
inline int sgn(double x) { return (x > EPS) - (x < -EPS);} inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double dotDet(Point o, Point a, Point b) { return dotDet(a - o, b - o);}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline double toRad(double deg) { return deg / 180.0 * PI;}
inline double angle(Vec v) { return atan2(v.y, v.x);}
inline Vec vecUnit(Vec x) { return x / vecLen(x);}
inline Vec normal(Vec x) { return Vec(-x.y, x.x) / vecLen(x);} const int N = ;
struct DLine {
Point p;
Vec v;
double ang;
DLine() {}
DLine(Point p, Vec v) : p(p), v(v) { ang = atan2(v.y, v.x);}
bool operator < (DLine L) const { return ang < L.ang;}
} dl[N];
Point pt[N]; inline bool onLeft(DLine L, Point p) { return crossDet(L.v, p - L.p) > ;}
Point dLineIntersect(DLine a, DLine b) {
Vec u = a.p - b.p;
double t = crossDet(b.v, u) / crossDet(a.v, b.v);
return a.p + a.v * t;
} struct Poly {
vector<Point> pt;
Poly() { pt.clear();}
~Poly() {}
Poly(vector<Point> &pt) : pt(pt) {}
Point operator [] (int x) { return pt[x];}
int size() { return pt.size();}
double area() {
double ret = 0.0;
int sz = pt.size();
pt.push_back(pt[]);
for (int i = ; i <= sz; i++) ret += crossDet(pt[i], pt[i - ]);
pt.pop_back();
return fabs(ret / 2.0);
}
} ; Poly halfPlane(DLine *L, int n) {
Poly ret = Poly();
sort(L, L + n);
int fi, la;
Point *p = new Point[n];
DLine *q = new DLine[n];
q[fi = la = ] = L[];
for (int i = ; i < n; i++) {
while (fi < la && !onLeft(L[i], p[la - ])) la--;
while (fi < la && !onLeft(L[i], p[fi])) fi++;
q[++la] = L[i];
if (sgn(crossDet(q[la].v, q[la - ].v)) == ) {
la--;
if (onLeft(q[la], L[i].p)) q[la] = L[i];
}
if (fi < la) p[la - ] = dLineIntersect(q[la - ], q[la]);
}
while (fi < la && !onLeft(q[fi], p[la - ])) la--;
if (la < fi) return ret;
p[la] = dLineIntersect(q[la], q[fi]);
for (int i = fi; i <= la; i++) ret.pt.push_back(p[i]);
return ret;
} bool isClockwise(Point *pt, int n) {
double sum = 0.0;
pt[n] = pt[];
Point O = Point(0.0, 0.0);
for (int i = ; i < n; i++) {
sum += crossDet(O, pt[i], pt[i + ]);
}
return sum < ;
} int main() {
int T, n;
cin >> T;
while (T-- && cin >> n) {
for (int i = ; i < n; i++) cin >> pt[i].x >> pt[i].y;
pt[n] = pt[];
if (isClockwise(pt, n)) for (int i = ; i < n; i++) dl[i] = DLine(pt[i + ], pt[i] - pt[i + ]);
else for (int i = ; i < n; i++) dl[i] = DLine(pt[i], pt[i + ] - pt[i]);
Poly tmp = halfPlane(dl, n);
if (tmp.size() >= ) printf("%.2f\n", tmp.area());
else puts("0.00");
}
return ;
}
——written by Lyon
poj 1279 Art Gallery (Half Plane Intersection)的更多相关文章
- poj 1279 Art Gallery - 求多边形核的面积
/* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...
- poj 1279 -- Art Gallery (半平面交)
鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- POJ 1279 Art Gallery 半平面交/多边形求核
http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...
- POJ 1279 Art Gallery 半平面交求多边形核
第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...
- POJ 1279 Art Gallery 半平面交 多边形的核
题意:求多边形的核的面积 套模板即可 #include <iostream> #include <cstdio> #include <cmath> #define ...
- POJ 1279 Art Gallery(半平面交)
题目链接 回忆了一下,半平面交,整理了一下模版. #include <cstdio> #include <cstring> #include <string> #i ...
- POJ 1279 Art Gallery(半平面交求多边形核的面积)
题目链接 题意 : 求一个多边形的核的面积. 思路 : 半平面交求多边形的核,然后在求面积即可. #include <stdio.h> #include <string.h> ...
- [POJ]1279: Art Gallery
题目大意:有一个N边形展馆,问展馆内有多少地方可以看到所有墙壁.(N<=1500) 思路:模板题,半平面交求出多边形的核后计算核的面积. #include<cstdio> #incl ...
- POJ 1279 Art Gallery【半平面交】(求多边形的核)(模板题)
<题目链接> 题目大意: 按顺时针顺序给出一个N边形,求N边形的核的面积. (多边形的核:它是平面简单多边形的核是该多边形内部的一个点集该点集中任意一点与多边形边界上一点的连线都处于这个多 ...
随机推荐
- web前端学习(二)html学习笔记部分(11)-- 没有标号记录的知识合集
这一部分内容相对比较简单,就不按规矩排序了.(主要是网站上也没有这一部分内容的排序) 1. html5的 非主体结构元素 学习笔记(1)里面记录过. 2. html5表单提交和PHP环境搭建 1. ...
- Hdu 1150
Machine Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- SpringMVC代码复制版
Lib目录 Java目录 HelloController文件代码 import org.springframework.web.servlet.ModelAndView; import org.spr ...
- php后端对跳转的封装
php后端对跳转的封装 /** * 页面跳转 * $url 跳转地址 * $time 一段时间后跳转 */ function app_redirect($url,$time=0,$msg='') { ...
- Python datetime模块的其他方法
- 51nod1040 矩阵相乘结果的判断
给出三个N*N的矩阵A, B, C,问A * B是否等于C?Input第1行,1个数N.(0 <= N <= 500)第2 - N + 1行:每行N个数,对应矩阵A的元素.(0 <= ...
- Linux之Shell1
1.输出命令:echo echo [选项] [输出内容] : -e 支持反斜线控制的字符转换.(类似于C语言的\) \\ 输出\本身 \t Tab键 \n 换行符 \f 换页符 ...
- BMDP为常规的统计分析提供了大量的完备的函数系统,如:方差分析(ANOVA)、回归分析(Regression)、非参数分析(Nonparametric Analysis)、时间序列(Times Series)等等。此外,BMDP特别擅于进行出色的生存分析(Survival Analysis )。许多年来,一大批世界范围内顶级的统计学家都曾今参与过BMDP的开发工作。这不仅使得BMDP的权威性得到
BMDP是Bio Medical Data Processing的缩写,是世界级的统计工具软件,至今已经有40多年的历史.目前在国际上与SAS.SPSS被并称为三大统计软件包.BMDP是一个大 ...
- 链表源代码(C语言实现)
源代码(C语言实现) ①.构造链表节点 typedef struct Node //一个单独的节点 { int ...
- 【JZOJ4792】【NOIP2016提高A组模拟9.21】整除
题目描述 麦克雷有一个1~n的排列,他想知道对于一些区间,有多少对区间内的数(x,y),满足x能被y整除. 输入 第一行包含2个正整数n,m.表示有n个数,m个询问. 接下来一行包含n个正整数,表示麦 ...