最好的解释:https://www.quora.com/What-is-an-intuitive-explanation-of-the-KKT-conditions#

作者:卢健龙
链接:https://www.zhihu.com/question/38586401/answer/105273125
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

拉格朗日乘数法(Lagrange multiplier)有很直观的几何意义。
举个2维的例子来说明:
假设有自变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。

我们可以画出f的等高线图,如下图。此时,约束g=c由于只有一个自由度,因此也是图中的一条曲线(红色曲线所示)。显然地,当约束曲线g=c与某一条等高线f=d1相切时,函数f取得极值。
两曲线相切等价于两曲线在切点处拥有共线的法向量。因此可得函数f(x,y)与g(x,y)在切点处的梯度(gradient)成正比。
于是我们便可以列出方程组求解切点的坐标(x,y),进而得到函数f的极值。

(一直怀疑这个图画错了,但是没有证据,为什么g(x,y)的梯度和f(x,y)的方向不一样呢?我感觉应该一样啊,因为梯度方向是数值增大的方向,问题纠结的地方就是那里是大?貌似又没有错误,因为仅仅从等高线上看,是分辨不出来山峰和盆地的等高线的,好乱,我已经糊涂了……)

KKT条件边界意义

对于有不等式约束的拉格朗日对偶问题,KKT条件可以总结成:约束条件(原始约束和引入拉格朗日乘子后的约束)、对x偏导为0、对偶互补条件

进一步可以理解为:

①对于无约束的变量偏导为0

②对于有约束的变量,在约束边界偏导可以不为0,不在约束边界偏导必为0

其中,不在约束边界的情况提供了函数值的伸缩性,使其取值为一个空间而不是一个点。

对偶互补条件就是对②的数学描述:

其中是原始约束。

对偶互补条件的在约束边界的物理意义:

不位于原始边界时,它在各个方向是“自由”的,若此时他的偏导不为0,那么它沿着原始问题中的负梯度方向移动时,可取的函数值变小,那么就不可能是解。所以,当不在约束边界时,它必须在极值点上,即:小于0时必为0

位于原始边界,即等于0时,它在边界上的移动不会改变函数值,所以它的偏导取合适的值来进一步减小函数值,即它的偏导可取大于0的值。

通过物理意义来理解KKT在边界的行为,会显得比较直观。

由此,SVM中的硬间隔最大化可由物理意义来直观的理解:

硬间隔最大化问题中,不等式约束为点的函数距离大于等于1。位于间隔边界的点(支持向量),相当于位于约束边界,他们的偏导可以不为0。而位于间隔边界之后的点,它们不在约束边界上,此时要想使间隔最大化,必须使的偏导为0,否则在负梯度方向上查找必能找到更优解。

对于SVM的软间隔最大化,由于支持向量不光是间隔边界上的点,还包括间隔平面之间的点,此时松弛变量的偏导同时也由惩罚参数决定,松弛变量的偏导的符号转换为的大小关系。通过分析,以下结论不难得到:

转自:http://www.bubuko.com/infodetail-519632.html

KKT条件的物理意义(转)的更多相关文章

  1. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  4. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  6. FFT结果的物理意义

    图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈 ...

  7. 文本分类学习 (九)SVM入门之拉格朗日和KKT条件

    上一篇说到SVM需要求出一个最小的||w|| 以得到最大的几何间隔. 求一个最小的||w|| 我们通常使用 来代替||w||,我们去求解 ||w||2 的最小值.然后在这里我们还忽略了一个条件,那就是 ...

  8. 寻找“最好”(4)——不等约束和KKT条件

    不等约束 上篇文章介绍了如何在等式约束下使用拉格朗日乘子法,然而真实的世界哪有那么多等式约束?我们碰到的大多数问题都是不等约束.对于不等约束的优化问题,可以这样描述: 其中f(x)是目标函数,g(x) ...

  9. 拉格朗日乘子法以及KKT条件

    拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法 ...

随机推荐

  1. 智能跳转---TC资源管理器

    ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;作者:天甜:QQ: ;一花一世界,一叶一枯荣,心无挂碍,无挂碍故 ...

  2. C/C++基础----类

    IO类属于不能被拷贝的类型,因此只能通过引用来传递.同时读取和写入操作都会改变流的内容,所以接收的是普通引用. 类内的友元声明仅仅指定了访问的权限,需要在友元声明之外再专门对函数进行一次声明. 可变数 ...

  3. AspectJ入门

    AOP的实现方式有两种: AOP框架在编译阶段,就对目标类进行修改,得到的class文件已经是被修改过的.生成静态的AOP代理类(生成*.class文件已经被改掉了,需要使用特定的编译器).以Aspe ...

  4. Valgrind memcheck 8种错误实例

    调不尽的内存泄漏,用不完的Valgrind Valgrind 安装 1. 到www.valgrind.org下载最新版valgrind-3.2.3.tar.bz2 2. 解压安装包:tar –jxvf ...

  5. Linux 期中架构 inotify

    全网备份数据同步方案 备份网站内部人员信息  不能解决外部(人员)上传数据的备份 定时任务最短执行的周期为一分钟,采用定时任务方式,有时可能造成一分钟内的数据丢失 因此对于重要数据需要采用实时同步的方 ...

  6. [UE4GamePlay架构(九)GameInstance(转)

    GameInstance这个类可以跨关卡存在,它不会因为切换关卡或者切换游戏模式而被销毁.然而,GameMode和PlayController就会再切换关卡或者游戏模式时被引擎销毁重置,这样他们里面的 ...

  7. javascript 中的函数声明和函数表达式区别

    函数声明格式: function add(a, b) { alert(a+b); } 函数表达式格式: var add = function (a, b) { alert(a+b); } 解析器在向环 ...

  8. IO模式调查利器blkiomon介绍

    本文链接地址: IO模式调查利器blkiomon介绍 blkiomon 是blktrace工具包带的一个方便用户了解IO情况的工具, 由于blktrace太专业,需要了解的IO协议栈的东西太多,blk ...

  9. QQ去除聊天框广告详解——2016.9 版

    QQ聊天框广告很烦人,百度出来的一些方法早已过时,下面是博主整理出来的方法,供各位同学参考. 1.按键盘上的 Win+R 快捷键打开运行框,然后复制并粘贴 Application Data\Tence ...

  10. ORM介绍(字段 和 字段的参数)

    ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...