Flume NG的简单使用可以参考介绍文档:http://blog.csdn.net/pelick/article/details/18193527,图片也来源此blog:


 
 
 
下载完flume后,就可以在 https://flume.apache.org/FlumeUserGuide.html 中根据教程来启动agent console
 
启动完成后,在console中打印出现下面的日志信息:
2016-06-21 13:00:06,890 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:164)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/172.16.79.12:44444]
 
可以通过telnet 172.16.79.12 44444 的方式来发送数据,发送完成后就可以在启动的agent中查看到该日志输出,至此一个简单的agent示例就演示完成。
 
2016-06-21 13:00:28,905 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:94)] Event: { headers:{} body: 61 62 63 64 65 0D                               abcde. }
 

规划配置flume用于日志收集

 
 
经过规划,我们使用flume用来收集日志的场景图如下所示,每台web服务器均配置一个agent用来传输日志,并上传至统一的agent4中,
 


 
 
 
对于每台web server上的agent,我们采用Exec Sources类型的source来配置简单的tail -f 来实现对日志进行处理,并打印到日志控制台中,配置方法如下,其中type需要声明为exec,需要指定执行的命令(tail -F,根据需要还可以以管道的方式加入grep等命令):
 
zhenmq-agent.sources = zhenmq-source
zhenmq-agent.sinks = zhenmq-sink
zhenmq-agent.channels = zhenmq-channel # Describe/configure the source
zhenmq-agent.sources.zhenmq-source.type = exec
zhenmq-agent.sources.zhenmq-source.command = tail -F /usr/local/tomcat/tomcat-zhenmq/logs/apilog/common-all.log # Describe the sink
zhenmq-agent.sinks.zhenmq-sink.type = logger # Use a channel which buffers events in memory
zhenmq-agent.channels.zhenmq-channel.type = memory
zhenmq-agent.channels.zhenmq-channel.capacity = 1000
zhenmq-agent.channels.zhenmq-channel.transactionCapacity = 100 # Bind the source and sink to the channel
zhenmq-agent.sources.zhenmq-source.channels = zhenmq-channel
zhenmq-agent.sinks.zhenmq-sink.channel = zhenmq-channel
 
日志流经过channel(可以根据条件选择memory还是file)后,需要输出到统一的collector,这时候就需要指定使用flume中内置的序列化方式,这里我们使用比较通用的Avro Source/Sink,source用来接收其他服务端发送的日志流,sink用于将日志数据输出。
 
如果希望将flume进行分层设计,可以使用中间序列化方式将收集到的日志传输到不同的服务器中,此时可以使用flume中自带的avro source和sink组件,需要指定type为avro,以及hostname和port(端口号)。
 
# Describe the sink
zhenmq-agent.sinks.zhenmq-sink.type = avro
zhenmq-agent.sinks.zhenmq-sink.hostname = 192.168.1.12
zhenmq-agent.sinks.zhenmq-sink.port = 23004 collector-agent.sources.collector-source.type = avro
collector-agent.sources.collector-source.bind= 192.168.1.13
collector-agent.sources.collector-source.port = 23004
 
注意,首先要在163服务器上启动flume服务,在先启动collector-source的情况下会报出拒绝连接的错误:
 
org.apache.flume.EventDeliveryException: Failed to send events
at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:392)
at org.apache.flume.sink.DefaultSinkProcessor.process(DefaultSinkProcessor.java:68)
at org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:147)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.flume.FlumeException: NettyAvroRpcClient { host: 192.168.1.163, port: 23004 }: RPC connection error
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:182)
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:121)
at org.apache.flume.api.NettyAvroRpcClient.configure(NettyAvroRpcClient.java:638)
at org.apache.flume.api.RpcClientFactory.getInstance(RpcClientFactory.java:89)
at org.apache.flume.sink.AvroSink.initializeRpcClient(AvroSink.java:127)
at org.apache.flume.sink.AbstractRpcSink.createConnection(AbstractRpcSink.java:211)
at org.apache.flume.sink.AbstractRpcSink.verifyConnection(AbstractRpcSink.java:272)
at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:349)
... 3 more
Caused by: java.io.IOException: Error connecting to /192.168.1.163:23004
at org.apache.avro.ipc.NettyTransceiver.getChannel(NettyTransceiver.java:261)
at org.apache.avro.ipc.NettyTransceiver.<init>(NettyTransceiver.java:203)
at org.apache.avro.ipc.NettyTransceiver.<init>(NettyTransceiver.java:152)
at org.apache.flume.api.NettyAvroRpcClient.connect(NettyAvroRpcClient.java:168)
... 10 more
Caused by: java.net.ConnectException: 拒绝连接
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.connect(NioClientSocketPipelineSink.java:496)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.processSelectedKeys(NioClientSocketPipelineSink.java:452)
at org.jboss.netty.channel.socket.nio.NioClientSocketPipelineSink$Boss.run(NioClientSocketPipelineSink.java:365)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
... 1 more
 
启动完成后,会在163 collector服务中看到如下的日志,说明已经启动成功。
 
2016-06-22 18:48:30,179 (New I/O server boss #1 ([id: 0xb85f59b4, /192.168.1.163:23004])) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] OPEN
2016-06-22 18:48:30,181 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] BOUND: /192.168.1.163:23004
2016-06-22 18:48:30,181 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0xf57de901, /192.168.1.162:52778 => /192.168.1.163:23004] CONNECTED: /192.168.1.162:52778
 
 
 
Flume的负载均衡与故障转移
 
 
由于在图中agent4为单点,加入agent4挂掉的话会导致日志无法正常输出,故采用flume的负载均衡/故障转移模式来避免这一单点生效。即每次按照一定的算法选择sink输出到指定地方,如果在文件输出量很大的情况下,负载均衡还是很有必要的,通过多个通道输出缓解输出压力。
 
flume内置的负载均衡的算法默认是round robin,轮询算法,按序选择。
 
source里的event流经channel,进入sink组,在sink组内部根据负载算法(round_robin、random)选择sink,后续可以选择不同机器上的agent实现负载均衡。
 


 
 
 
如果是采用故障转移,这组sinke将会组成一个failover sink processor,此时如果有一个sink处理失败,flume会将这个sink放到一个地方等待冷却时间,等到正常处理event的时候再拿回来。event通过通过一个channel流向一个sink组,在sink组内部根据优先级选择具体的sink,一个失败后再转向另一个sink,流程图如下:
 


 
 
鉴于我们当前的日志规模不算太大,先采用故障转移的方式来进行,后续如果处理不过来可以采用负载均衡。
 
 

配置故障转移

 
首先需要定义sinkgroups,定义group的处理类型,以及每个sink的优先级,此时先会往优先级较高的服务端发送日志,如果该服务不可用,则放到冷却池中,使用优先级较低的sink来处理。
 
注意启动顺序,一定是被依赖的flume先启动。
 
zhenmq-agent.sources = zhenmq-source
zhenmq-agent.sinks = collector-sink1 collector-sink2
zhenmq-agent.channels = zhenmq-channel # Describe/configure the source
zhenmq-agent.sources.zhenmq-source.type = exec
zhenmq-agent.sources.zhenmq-source.command = tail -F /usr/local/tomcat/tomcat-zhenmq/logs/apilog/common-all.log # Describe the sink
zhenmq-agent.sinks.collector-sink1.type = avro
zhenmq-agent.sinks.collector-sink1.channel= zhenmq-channel
zhenmq-agent.sinks.collector-sink1.hostname = 192.168.1.163
zhenmq-agent.sinks.collector-sink1.port = 23004 zhenmq-agent.sinks.collector-sink2.type = avro
zhenmq-agent.sinks.collector-sink2.channel= zhenmq-channel
zhenmq-agent.sinks.collector-sink2.hostname = 192.168.1.165
zhenmq-agent.sinks.collector-sink2.port = 23004 # Use a channel which buffers events in memory
zhenmq-agent.channels.zhenmq-channel.type = memory
zhenmq-agent.channels.zhenmq-channel.capacity = 1000
zhenmq-agent.channels.zhenmq-channel.transactionCapacity = 100 zhenmq-agent.sinkgroups = g1
zhenmq-agent.sinkgroups.g1.sinks = collector-sink1 collector-sink2 zhenmq-agent.sinkgroups.g1.processor.type = failover
zhenmq-agent.sinkgroups.g1.processor.priority.collector-sink1 = 10
zhenmq-agent.sinkgroups.g1.processor.priority.collector-sink2 = 11
 

Flume连接到Storm

 
一般情况下,flume的数据需要经过一轮转换至kafka中,然后storm读取kafka中的消息,来达到实时分析的目的。但我们可以暂时跳过kafka,直接将flume的输出结果输出到strom中。
 
参考开源实现:https://github.com/rvisweswara/flume-storm-connector,但通过分析其源码可以看出,其内部通过启动一个flume agent组件(SourceRunner,Channel,SinkCounter)来通过avro协议接收flume传输出来的流来完成此目的,FlumeSpout类型的整体类型图如下:
 


 
 
由于原来的实例是三年前写的,jar包比较老,可能无法启动,可以clone下面的链接本地启动(master分支):https://github.com/clamaa/flume-storm-connector
 
 
 
测试用例的启动入口类型为:FlumeConnectorTopology,其main方法中首先需要配置一个topology.properties文件,用来指定在FlumeSpout启动的Agent source类型和端口(一般情况下的type为avro,只需要指定对应的bind和port即可)。
 
flume-agent.source.type=avro
flume-agent.channel.type=memory
flume-agent.source.bind=127.0.0.1
flume-agent.source.port=10101
 
根据MaterializedConfigurationProvider以及相关配置,生成启动agent对应的MaterializedConfiguration(flume相关),在FlumeSpout.open的方法中,MaterializedConfiguration可以生成 sourceRunner(avro类型), channel(内存级别的,可以从中直接获取数据)。
 
构造flume agent的过程,由于不需要sink,也不需要添加SinkRunner,只加入SinkCounter用于输出计数使用(MXBean类型,可以通过JMX Console监听其关键输出指标)。
flumeAgentProps = StormEmbeddedAgentConfiguration.configure(
FLUME_AGENT_NAME, flumeAgentProps);
MaterializedConfiguration conf = configurationProvider.get(
getFlumePropertyPrefix(), flumeAgentProps); Map<String, Channel> channels = conf.getChannels();
if (channels.size() != 1) {
throw new FlumeException("Expected one channel and got "
+ channels.size());
}
Map<String, SourceRunner> sources = conf.getSourceRunners();
if (sources.size() != 1) {
throw new FlumeException("Expected one source and got "
+ sources.size());
} this.sourceRunner = sources.values().iterator().next();
this.channel = channels.values().iterator().next(); if (sinkCounter == null) {
sinkCounter = new SinkCounter(FlumeSpout.class.getName());
}
 
nextTurple方法中,定时对内部启动的Flume Channel进行take操作,获取最新event,
for (int i = 0; i < this.batchSize; i++) {
Event event = channel.take();
if (event == null) {
break;
}
batch.add(event);
}
 
并将这些event包装成Values,由Collector进行emit(发射)操作,这里由于日志的格式可能会有多种类型,FlumeSpout可以设置TurpleProducer,根据对应的event自定义消息类型,以及声明的字段名称。
 
for (Event event : batch) {
Values vals = this.getTupleProducer().toTuple(event);
this.collector.emit(vals);
this.pendingMessages.put(
event.getHeaders().get(Constants.MESSAGE_ID), event); LOG.debug("NextTuple:"
+ event.getHeaders().get(Constants.MESSAGE_ID));
}
 
消息在发送之前会暂时存在FlumeSpout.pendingMessages中(ConcurrentHashMap),以支持消息确认,在确认完成后,会将其删除;如果确认失败,会根据消息id进行重发。
 

 /*
* When a message is succeeded remove from the pending list
*
* @see backtype.storm.spout.ISpout#ack(java.lang.Object)
*/
public void ack(Object msgId) {
this.pendingMessages.remove(msgId.toString());
} /*
* When a message fails, retry the message by pushing the event back to channel.
* Note: Please test this situation...
*
* @see backtype.storm.spout.ISpout#fail(java.lang.Object)
*/
public void fail(Object msgId) {
//on a failure, push the message from pending to flume channel; Event ev = this.pendingMessages.get(msgId.toString());
if(null != ev){
this.channel.put(ev);
}
}
同时,该connector中也提供AvroSinkBolt,用于将storm生成的消息通过avro的方式再传回至flume中,其基本原理就是维持一个与flume的avro agent的连接RpcClient,并可以自定义flume事件生成器,将storm产生的Turple转换成storm对应的Event,这里就不再详细说明。
 
    private RpcClient rpcClient;
private FlumeEventProducer flumeEventProducer;
Flume收集日志的agent进程仍然可能出现另一种情况,就是挂掉,此时日志中出现错误:

<!--?xml version="1.0" encoding="UTF-8" standalone="no"?-->

 
2016-07-06 11:14:19,951 (pool-5-thread-1) [INFO - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:376)] Command [tail -F /usr/local/tomcat/tomcat-shopapi/logs/apilog/common-warn.log] exited with 137
<!--?xml version="1.0" encoding="UTF-8" standalone="no"?-->

exec source中有两个属性,用于处理当进程异常退出时尝试重启操作。
 
restartThrottle 10000 Amount of time (in millis) to wait before attempting a restart
restart false Whether the executed cmd should be restarted if it dies
 
 
 
 
 
 

flume系统使用以及与storm的初步整合的更多相关文章

  1. Twitter的流处理器系统Heron——升级的storm,可以利用mesos来进行资源调度

    2011年,Twitter发布了开源的分布式流计算系统Storm.四年后,随着用户数量的急剧增加,Twitter每天要处理的事件已经增加到十亿以上.Storm系统应对如此庞大而复杂多样的流数据变得十分 ...

  2. Redis进阶实践之七Redis和Lua初步整合使用(转载 7)

    Redis进阶实践之七Redis和Lua初步整合使用 一.引言 Redis学了一段时间了,基本的东西都没问题了.从今天开始讲写一些redis和lua脚本的相关的东西,lua这个脚本是一个好东西,可以运 ...

  3. storm和kafka整合

    storm和kafka整合 依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId&g ...

  4. Flume+Kafka+storm的连接整合

    Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...

  5. storm学习初步

    本文根据自己的了解,对学习storm所需的一些知识进行汇总,以备之后详细了解. maven工具 参考书目 Maven权威指南 官方文档 Vagrant 分布式开发环境 博客 storm 参考书目 Ge ...

  6. Linux系统_Linux平台“盖茨木马”初步了解

    静态分析: # file Yang Yang: ELF -bit LSB executable, Intel , version (SYSV), statically linked, , not st ...

  7. 大数据学习——Storm+Kafka+Redis整合

    1 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...

  8. Redis进阶实践之七Redis和Lua初步整合使用

    一.引言        Redis学了一段时间了,基本的东西都没问题了.从今天开始讲写一些redis和lua脚本的相关的东西,lua这个脚本是一个好东西,可以运行在任何平台上,也可以嵌入到大多数语言当 ...

  9. Spring Data初步--整合Hibernate

    Spring Data课程中的技术介绍 Hibernate: Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,它将 pojo 与数据库表建立映射关系 ...

随机推荐

  1. MyEclipse怎么导入导出项目

    MyEclipse怎么导入导出项目 | 浏览:25271 | 更新:2012-06-06 17:48 1 2 3 4 5 6 7 分步阅读 MyEclipse,是一个十分优秀的功能强大的JavaEE的 ...

  2. DS18B20配置

    复位脉冲: 先拉低至少480us,以产生复位脉冲,接着释放4.7k电阻为高,延时15~60us, 进入接收. void DS18B20_Rst(void) { DS18B20_IO_OUT(); // ...

  3. 发布网站的时候发现360极速浏览器ie7内核不兼容样式的问题

    引言:  在Web应用的开发过程中,发现若干页面在360的浏览器上显示不正常,而在其他的浏览器上,皆为正常状态,问题出在哪里呢? 问题的提出: Web页面在360的浏览器上,显示不正确. 但是在Fir ...

  4. python3反射

    class Cmd:# def __init__(self,name):# self.name = name def run(self): while 1: cmd = input('>> ...

  5. (dfs痕迹清理兄弟篇)bfs作用效果的后效性

    dfs通过递归将每种情景分割在不同的时空,但需要对每种情况对后续时空造成的痕迹进行清理(这是对全局变量而言的,对形式变量不需要清理(因为已经被分割在不同时空)) bfs由于不是利用递归则不能分割不同的 ...

  6. django中的FBV和CBV

    django中请求处理方式有2种:FBV 和 CBV 一.FBV FBV(function base views) 就是在视图里使用函数处理请求. 看代码: urls.py from django.c ...

  7. Linux内核中的机制学习总结

    一.驱动中的poll机制 1.简介:select()和poll()系统调用的本质一样,前者在 BSD UNIX 中引入的,后者在 System V 中引入的. 应用程序使用 select() 或 po ...

  8. oracle C# 访问

    使用oracle的odp.net 进行oracle数据库的访问对于进行oracle数据库的开发来说是比较方便的,使用的方式与ADO.net 是一致的. 一下为使用的测试 1. 安装必要的oracle ...

  9. atitit.加入win 系统服务 bat批处理程序服务的法总结instsrv srvany java linux

    atitit.加入win 系统服务 bat批处理程序服务的法总结instsrv srvany  java linux 系统服务不同于普通视窗系统应用程式.不可能简简单单地通过执行一个EXE就启动视窗系 ...

  10. sqlserver 2008 r2 下载地址和序列号,可用迅雷下载

    sqlserver 2008 r2 下载地址,可用迅雷下载 下载sqlserver 2008 r2 ,微软用了一个下载器,经过从下载器上,将他的地址全部用键盘敲了下来.最终的简体中文版地址如下: 32 ...