Kafka 协议实现中的内存优化

 

Jusfr 原创,转载请注明来自博客园

Request 与 Response 的响应格式

Request 与 Response 都是以 长度+内容 形式描述, 见于 A Guide To The Kafka Protocol

Request 除了 Size+ApiKey+ApiVersion+CorrelationId+ClientId 这些固定字段, 额外的 RequestMessage 包含了具体请求数据;

Request => Size ApiKey ApiVersion CorrelationId ClientId RequestMessage
Size => int32
ApiKey => int16
ApiVersion => int16
CorrelationId => int32
ClientId => string
RequestMessage => MetadataRequest | ProduceRequest | FetchRequest | OffsetRequest | OffsetCommitRequest | OffsetFetchRequest

Response 除了 Size+CorrelationId, 额外的 ResponseMessage 包含了具体响应数据;

Response => Size CorrelationId ResponseMessage
Size => int32
CorrelationId => int32
ResponseMessage => MetadataResponse | ProduceResponse | FetchResponse | OffsetResponse | OffsetCommitResponse | OffsetFetchResponse

处理序列化与反序列化需求

使用 MemoryStream

序列化 Request 需要分配内存, 从缓冲区读取 Response 同理.

MemoryStream 是一个可靠方案, 它实现了自动扩容, 但扩容过程离不开字节拷贝, 而频繁分配不小的内存将影响性能, 近似的扩容示例代码如下:

// init
Byte[] buffer = new Byte[4096];
Int32 offset = 0; //write bytes
Byte[] bytePrepareCopy = // from outside
if (bytePrepareCopy > buffer.Length - offset) {
Byte[] newBuffer = new Byte[buffer.Length * 2];
Array.Copy(buffer, 0, newBuffer, 0, offset);
buffer = newBuffer;
}
Array.Copy(bytePrepareCopy, 0, buffer, offset, bytePrepareCopy.Length);

数组扩容可以参见 List 的实现, 这里只是示意, 没有处理长度为 (buffer.Length*2 - offset) < bytePrepareCopy.Length 的情况

在数组长度超4k 时,扩容成本非常高。如果约定“请求和响应不得超过4k“, 那么使用可回收(见下文相关内容)的固定长度的数组模拟 MemoryStream 的读取和写入行为, 能够达到极大的性能收益。

KafkaStreamBinary (见于 github) 内部使用 MemoryStream, KafkaFixedBinary (见于 github) 则是基于数组的实现;

使用 BufferManager

使用过 Memcached 的人很容易理解 BufferManager 的思路: 为了降低频繁开辟内存带来的开销,首先“将内存块化”, 申请者获取到“成块的内存”, 被分配出去的内存块标记为“已分配”; 与 Memcached 不同的是 BufferManager 期望申请者归还使用完后的内存块,以重新分配给其他申请操作。

System.ServiceModel.Channels.BufferManager 提供了一个可靠实现, 大致使用方式如下:

const Int32 size = 4096;
BufferManager bm = BufferManager.CreateBufferManager(maxBufferPoolSize: size * 32, maxBufferSize: size);
Byte[] buffer = bm.TakeBuffer(1024);
bm.ReturnBuffer(buffer);

与手动分配内容的性能对比

const Int32 size = 4096;
BufferManager bm = BufferManager.CreateBufferManager(maxBufferPoolSize: size * 10, maxBufferSize: size); var timer = new FunctionTimer();
timer.Push("BufferManager", () => {
Byte[] buffer = bm.TakeBuffer(size);
bm.ReturnBuffer(buffer);
}); timer.Push("new Byte[]", () => {
Byte[] buffer = new Byte[size];
}); timer.Initialize();
timer.Execute(100000).Print();

测试结果:

BufferManager
Time Elapsed : 7ms
CPU Cycles : 17,055,523
Memory cost : 3,388
Gen 0 : 2
Gen 1 : 2
Gen 2 : 2
new Byte[]
Time Elapsed : 42ms
CPU Cycles : 113,437,539
Memory cost : 24
Gen 0 : 263
Gen 1 : 2
Gen 2 : 2
  • 过小的内容使用没有使用 BufferManager 的必要,但BufferManager分配超过 4k 内存时性能下降明显;
  • 最优情况是申请人获取的内存块大小一致,如果设置maxBufferSize = 4k,但 TakeBuffer(Int32 bufferSize) 方法使用的参数大于 4k,测试表明性能还不如手动创建 Byte 数组;
  • mono 的实现存在线程安全的问题;

强制要求业务使用的请求不超过4k 貌似做得到,但需求更大内存的场景总是存在,比如合并消息、批量消费等,Chuye.Kafka 作为类库需要提供支持。

KafkaScalableBinary = BufferManager + Byte[][]

KafkaScalableBinary 并没有发明新东西, 在其内部维护了一个 Dictionary<int32, byte[]=""> 保存一系列 Byte数组;

初始化时并未真正分配内存, 除非开始写入;

public KafkaScalableBinary()
: this(4096) {
} public KafkaScalableBinary(Int32 size) {
if (size <= 0) {
throw new ArgumentOutOfRangeException("size");
}
_lengthPerArray = size;
_buffers = new Dictionary<Int32, Byte[]>(16);
}

写入时先根据当前位置对数组长度取模 _position / _lengthPerArray 找到待写入数组,不存在则分配新数组;

private Byte[] GetBufferForWrite() {
var index = (Int32)(_position / _lengthPerArray);
Byte[] buffer;
if (!_buffers.TryGetValue(index, out buffer)) {
if (_lengthPerArray >= 128) {
buffer = ServiceProvider.BufferManager.TakeBuffer(_lengthPerArray);
}
else {
buffer = new Byte[_lengthPerArray];
}
_buffers.Add(index, buffer);
}
return buffer;
}

然后根据当前位置对数组长度取整 _position % _lengthPerArray 找到目标位置;由于待写入长度可能超过可使用长度,这里使用了 while 循环,一边获取和分配待写入数组, 一边将剩余字节写入其中,直至完成;

public override void WriteByte(Byte[] buffer, int offset, int count) {
if (buffer == null) {
throw new ArgumentNullException("buffer");
}
if (buffer.Length == 0) {
return;
}
if (buffer.Length < count) {
throw new ArgumentOutOfRangeException();
} checked {
var left = count; //标记剩余量
while (left > 0) {
var targetBuffer = GetBufferForWrite(); //查找目标数组
var targetOffset = (Int32)(_position % _lengthPerArray); //查找目标位置
if (targetOffset == _lengthPerArray - 1) { //如果位置已经位于数组末尾, 说明位于起始位置;
targetOffset = 0;
} var prepareCopy = left; //准备写入剩余量
if (prepareCopy > _lengthPerArray - targetOffset) { //但数组的剩余长度可能不够,写入较小长度
prepareCopy = _lengthPerArray - targetOffset;
}
Array.Copy(buffer, count - left, targetBuffer, targetOffset, prepareCopy); //拷贝字节
_position += prepareCopy; //推进位置
left -= prepareCopy; //减小剩余量
if (_position > _length) { //增大总长度
_length = _position;
}
}
}
}

读取过程类似,循环查找待读取数组和拷贝字节直到完成,不同的是分配内存的逻辑以一条异常替代;

public override Int32 ReadBytes(Byte[] buffer, int offset, int count) {
if (buffer == null) {
throw new ArgumentNullException("buffer");
}
if (buffer.Length == 0) {
return 0;
}
if (buffer.Length < count) {
throw new ArgumentOutOfRangeException();
}
checked {
var prepareRead = (Int32)(Math.Min(count, _length - _position)); //计算待读取长度
var left = prepareRead; //标记剩余量
while (left > 0) {
var targetBuffer = GetBufferForRead(); //查找目标数组
var targetOffset = (Int32)(_position % _lengthPerArray); //查找目标位置
var prepareCopy = left; //准备读取剩余量
if (prepareCopy > _lengthPerArray - targetOffset) {
prepareCopy = _lengthPerArray - targetOffset;
}
Array.Copy(targetBuffer, targetOffset, buffer, prepareRead - left, prepareCopy); //但数组的剩余长度可能不够,读取较小长度
_position += prepareCopy; //推进位置
left -= prepareCopy; //减小剩余量
}
return prepareRead;
}
} private Byte[] GetBufferForRead() {
var index = (Int32)(_position / _lengthPerArray);
Byte[] buffer;
if (!_buffers.TryGetValue(index, out buffer)) {
throw new IndexOutOfRangeException();
}
return buffer;
}

释放时释放内部维护的的全部字节;

public override void Dispose() {
foreach (var item in _buffers) {
if (_lengthPerArray >= 128) {
ServiceProvider.BufferManager.ReturnBuffer(item.Value);
}
}
_buffers.Clear();
}

写入缓冲区是对内部维护数组列表的直接操作,高度优化

public override void CopyTo(Stream destination) {
foreach (var item in GetBufferAndSize()) {
destination.Write(item.Key, 0, item.Value);
}
}

读取缓冲区时和写入行为类似

public override void ReadFrom(Stream source, int count) {
var left = count;
var loop = 0;
do {
var targetBuffer = GetBufferForWrite();
var targetOffset = (Int32)(_position % _lengthPerArray);
var prepareCopy = left;
if (prepareCopy > _lengthPerArray - targetOffset) {
prepareCopy = _lengthPerArray - targetOffset;
} var readed = source.Read(targetBuffer, targetOffset, prepareCopy);
_position += readed;
left -= readed;
if (_position > _length) {
_length = _position;
}
loop++;
} while (left > 0);
}

实际上可以从 MemoryStream 定义出 ScalableMemoryStream 再改写其行为,KafkaScalableBinary 依赖于 MemoryStream 而不是具体实现,整体就更加"设计模式"了 , 基本逻辑前文已陈述。

测试过程中发现,一来 **mono 的 BufferManager 实现存在线程安全问题*,故 Chuye.Kafka 提供了一个 ObjectPool 模式的 BufferManager 作为替代方案; 二是 KafkaScalableBinary 与 ScalableStreamBinary 的性能对比测试结果非常不稳定,但前者频繁的取横取整及字典开销必然是拖累,我会继续追踪和优化。

KafkaScalableBinary (见于 github), 序列化部分设计示意:


Jusfr 原创,转载请注明来自博客园

Kafka 协议实现中的内存优化【转】的更多相关文章

  1. Kafka 协议实现中的内存优化

    Kafka 协议实现中的内存优化 Kafka 协议实现中的内存优化   Jusfr 原创,转载请注明来自博客园 Request 与 Response 的响应格式 Request 与 Response ...

  2. pyhon中的内存优化机制

    一.变量的内存地址 python中变量的内存地址可以用id()来查看 >>> a = " >>> id(a) 2502558915696 二.pyhon中 ...

  3. Java虚拟机内存优化实践

    前面一篇文章介绍了Java虚拟机的体系结构和内存模型,既然提到内存,就不得不说到内存泄露.众所周知,Java是从C++的基础上发展而来的,而C++程序的很大的一个问题就是内存泄露难以解决,尽管Java ...

  4. SQLServer 2014 内存优化表

    内存优化表是 SQLServer 2014 的新功能,它是可以将表放在内存中,这会明显提升DML性能.关于内存优化表,更多可参考两位大侠的文章:SQL Server 2014新特性探秘(1)-内存数据 ...

  5. Android性能优化:手把手带你全面实现内存优化

      前言 在 Android开发中,性能优化策略十分重要 本文主要讲解性能优化中的内存优化,希望你们会喜欢 目录   1. 定义 优化处理 应用程序的内存使用.空间占用 2. 作用 避免因不正确使用内 ...

  6. Redis系列--内存淘汰机制(含单机版内存优化建议)

    https://blog.csdn.net/Jack__Frost/article/details/72478400?locationNum=13&fps=1 每台redis的服务器的内存都是 ...

  7. ANDROID内存优化(大汇总——中)

    转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...

  8. Android 性能优化之内存泄漏检测以及内存优化(中)

    https://blog.csdn.net/self_study/article/details/66969064 上篇博客我们写到了 Java/Android 内存的分配以及相关 GC 的详细分析, ...

  9. Android内存优化大全(中)

    转载请注明本文出自大苞米的博客(http://blog.csdn.net/a396901990),谢谢支持! 写在最前: 本文的思路主要借鉴了2014年AnDevCon开发者大会的一个演讲PPT,加上 ...

随机推荐

  1. 【LeetCode】227. Basic Calculator II

    Basic Calculator II Implement a basic calculator to evaluate a simple expression string. The express ...

  2. springboot(五):spring data jpa的使用

    在上篇文章springboot(二):web综合开发中简单介绍了一下spring data jpa的基础性使用,这篇文章将更加全面的介绍spring data jpa 常见用法以及注意事项 使用spr ...

  3. Python学习笔记(八)—— 使用dict和set

    一.dict 1.定义: Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度 2.优势: di ...

  4. 转载:windiws server 2008R2 IIS7.5 设置win7 IIS7设置,文件夹权限配置,Authenticated Users,支持asp temp

    第一步,进入控制面板,点击程序图标 第二步,点击打开或关闭Windows功能 第三步,勾选Internet信息服务全部功能,或根据需要,点击确定,安装 第四步,进入控制面板,点击管理工具 第五步,点击 ...

  5. SqlServer 2005 将已存在大量数据的表更改为分区表

    一.分区表简介: 使用分区表的主要目的,是为了改善大型表以及具有各种访问模式的表的可伸缩性和可管理性.分区一方面可以将数据分为更小.更易管理的部分,为提高性能起到一定的作用:另一方面,对于如果具有多个 ...

  6. Hive编程指南

  7. Oracle 12C -- 删除audit policy

    删除之前,必须将policy disable掉:然后再删除 SQL> noaudit policy audit_sysprvi_po01; SQL> drop audit policy a ...

  8. Oracle 12C -- 删除PDB

    删除PDB SQL> select con_id,pdb_name,status from cdb_pdbs; CON_ID PDB_NAME STATUS ---------- ------- ...

  9. HTML5无刷新修改URL

    HTML5新添加了两个api分别是pushState和replaceState,DOM中的window对象通过window.history方法提供了对浏览器历史记录的读取,可以在用户的访问记录中前进和 ...

  10. 如何修改电脑的本地网卡(非笔记本无限网卡)的mac地址

    计算机---设备管理器--找到对应的本地网卡---右键属性-----高级----网络地址