找出N*N范围内可见格点的个数.

只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律:

若横纵坐标c,r均从0开始标号,则

(c,r)为可见格点 <=>r与c互质

证明:

若r与c有公因子1<b<min(r,c),则(c/b, r/b)在线段(0, 0)(c, r)上,则(c, r)不是可见格点.(充分性)

若r与c互质,显然线段上不存在整点,则(c, r)不是可见格点.(必要性)

φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值

也就是横坐标增1后纵坐标合法数目,即新增可见格点数(下半三角形区域).用时应乘二.

#include<stdio.h>
#include<string.h>
#include<math.h>
int ans[1005];
//由欧拉公式
//phi(m) = m * (p1-1)/p1 * (p2-1)/p2 * .. * (pn-1)/pn. pi为大于1且不超过m的与m互质的数 int eular(int n)
{
int s,i,m;
m=(int)sqrt(n+0.5);//出于精度问题考虑,其实就是开根号向下取整
s=n;
for(i=2; i<=m; i++)
if(n%i==0)//i是n的因数(如何保证是质数?看下文)
{
s=s/i*(i-1);//欧拉公式是连乘的,一项项乘
while(n%i==0)
n/=i;///去掉n中所有i因数,也就相当于筛掉了n中的i的倍数,使得此后i的倍数都不能整除"n"
}///那么下一个能够整除n的i一定是质数
if(n>1)
s=s/n*(n-1);
return s;
}
int main()
{
int n,i,t,cas=1;
scanf("%d",&t);
ans[1]=3;
for(i=2; i<=1000; i++)
ans[i]=ans[i-1]+eular(i)*2;
while(t--)
{
scanf("%d",&n);
printf("%d %d %d\n",cas++,n,ans[n]);
}
return 0;
}

自己敲一遍~

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int MAXN = 1005;
int ans[MAXN];
int eular(int n)
{
int i,s,m;
m = (int)sqrt(n+0.5);
s = n;
for(i = 2;i <= m;i++)
{
if(!(n%i))
{
s = s / i * (i-1);
while(!(n%i))
n /= i;
}
}
if(n>1)
s = s / n * (n-1);
///假设n可以分解为(升序排列)p[1], p[2], .. p[n-1], p[n]那么√n > p[n-1]
///反之 则 √n <= p[n-1]
/// => n <= p[n-1]*p[n-1] < p[n-1]*p[n] < p[1]*p[2]*..*p[n-1]*p[n] = n 矛盾
///因此,循环结束时,最多只剩下1个质因子.
return s;
} int main()
{
int T;
scanf("%d",&T);
memset(ans,0,sizeof(ans));
int last = 0;
ans[0] = 1;
for(int k=1;k<=T;k++)
{
int n;
scanf("%d",&n);
if(last>=n)
{
printf("%d\n",ans[n]);
continue;
}
for(int i=last+1;i<=n;i++)
{
ans[i] = ans[i-1] + 2*eular(i);
// printf("eular(%d) = %d\n",i,eular(i));
}
last = n;
printf("%d %d %d\n",k,n,ans[n]);
}
}

[poj 3090]Visible Lattice Point[欧拉函数]的更多相关文章

  1. POJ 3090 Visible Lattice Points 欧拉函数

    链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...

  2. POJ3090 Visible Lattice Points 欧拉函数

    欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...

  3. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  4. POJ 3090 Visible Lattice Points 【欧拉函数】

    <题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...

  5. POJ 3090 Visible Lattice Points | 其实是欧拉函数

    题目: 给一个n,n的网格,点可以遮挡视线,问从0,0看能看到多少点 题解: 根据对称性,我们可以把网格按y=x为对称轴划分成两半,求一半的就可以了,可以想到的是应该每种斜率只能看到一个点 因为斜率表 ...

  6. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  7. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  8. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  9. poj 3090 Visible Lattice Points(离线打表)

    这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...

随机推荐

  1. Ignite集群管理——基于静态IP的节点发现

    Ignite作为分布式内存,集群管理必不可少,Ignite支持基于组播,静态IP,Zookeeper,JDBC等方式发现节点,本文主要介绍基于静态IP的节点发现. 两个最重要的TCP通信设置类: 1. ...

  2. Linux服务器---使用mysql

    使用mysql 1.登录,可以用密码登录,也可以不用密码登录.命令格式“mysql –u 用户名 –p 密码” [root@localhost src]# mysql -u root –p     / ...

  3. Linux基础命令---mkisofs

    mkisofs mkisofs指令可以创建ISO9660/Joliet/HFS文件系统,现在使用指令genisoimage代替它.genisoImage是一个预掌握程序,用于生成iso 9660/jo ...

  4. 03: MySQL基本操作

    MySQL其他篇 目录: 参考网站 1.1 MySQL 三种数据类型(数值,字符串,日期) 1.2 MySQL常用增删改查命令 1.3 删除,添加或修改表字段 1.4 MySQL外键关联(一对多) 1 ...

  5. 05:ModelForm 数据验证 & 生成html & 数据库操作

    目录:Django其他篇 01:Django基础篇 02:Django进阶篇 03:Django数据库操作--->Model 04: Form 验证用户数据 & 生成html 05:Mo ...

  6. 20145304 Exp3 免杀原理与实践

    20145304 Exp3 免杀原理与实践 基础问题回答 (1)杀软是如何检测出恶意代码的? 检验特征码,包含特征码的代码会被杀软认为是恶意代码,例如一些常用恶意代码加壳后就有一个固定的代码会被认为是 ...

  7. Android学习笔记之 ActionBar

    http://developer.android.com/guide/topics/ui/actionbar.html 1,ActionBar的几种形式 2,使用ActionBar需要Activity ...

  8. PyQt5 - 01 使用qt creator创建第一个pyqt5界面程序

    1. 安装Qt Creator qt creator下载点我 2. 利用Qt Creator创建界面 点击文件 -> 新建文件或项目 选择Qt -> Qt设计师界面类 选择一个模版,创建一 ...

  9. SpringJDBC源码分析记录

    我们使用JdbcTemplate时,调用的query方法为: public <T> List<T> query(String sql, @Nullable Object[] a ...

  10. printf("%f\n",5);

    http://zhidao.baidu.com/link?url=87OGcxtDa6fQoeKmk1KylLu4eIBLJSh7CA3n5NWY-Ipm9TxZViFnIui307duCXWhaM0 ...