【[TJOI2014]上升子序列】
这本质上是一个\(dp\)
如果没有"两个上升子序列相同,那么只需要计算一次"这一个性质,那么就很好做了,我们用\(dp[i]\)表示以\(i\)结尾的上升子序列个数,那么就有\(dp[i]=\sum_{j=1}^{i-1}dp[j]\)
这个暴力转移是\(O(n^2)\)的,我们这里可以直接用树状数组来优化,于是就变成了\(O(nlogn)\)
同时由于数字可能非常大,所以需要离散化
之后再来考虑一下如何去重
首先重复的情况肯定是来自于一个之前已经出现过的数,而这个出现的数又将所有之前那个点算出来的答案又都加了一遍,这样就会有重复的了
那我们怎么去掉这些重复的情况呢
首先直接不考虑这个再次出现的数是肯定不对的,如果这个数和它之前出现的那个位置之间有一些比这个数小的的数,那么这些就就没有被计入答案,于是就错了
但是我们可以对每一个数维护一个\(lastans[i]\),表示\(i\)这个数上次被计入答案的时候\(\sum_{j=1}^{i-1}dp[j]\)是多少,之后我们还是用树状数组来查询前缀和,之后我们计入答案的应该就是这次查询出来的答案减去\(lastans\),也就是表示新增的上升子序列的个数是多少,之后我们再把这个数加入树状数组
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#define re register
#define lowbit(x) ((x)&(-(x)))
#define maxn 100005
#define LL long long
#define int long long
const LL mod=1e9+7;
std::map<LL,LL> ma;
LL c[maxn];
int n;
LL a[maxn],b[maxn];
LL lastans[maxn];
int f[maxn];
inline LL read()
{
char c=getchar();
LL x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x*r;
}
inline void add(int x,LL v)
{
for(re LL i=x;i<=n;i+=lowbit(i))
c[i]=(c[i]+v)%mod;
}
inline LL query(LL x)
{
LL ans=0;
for(re LL i=x;i;i-=lowbit(i))
ans=(ans+c[i])%mod;
return ans;
}
signed main()
{
n=read();
for(re int i=1;i<=n;i++) a[i]=b[i]=read();
std::sort(b+1,b+n+1);
int tot=std::unique(b+1,b+1+n)-b-1;
for(re int i=1;i<=tot;i++)
ma[b[i]]=i;
LL cnt=0;
for(re int i=1;i<=n;i++)
{
int j=ma[a[i]];
if(!f[j])
{
LL mid=query(j-1);
cnt=(cnt+mid)%mod;
add(j,mid+1);
lastans[j]=mid;
f[j]=1;
continue;
}
LL mid=query(j-1);
cnt=(cnt+mid-lastans[j]+mod)%mod;
add(j,(mid-lastans[j]+2*mod)%mod);
lastans[j]=mid;
}
std::cout<<cnt;
return 0;
}
【[TJOI2014]上升子序列】的更多相关文章
- bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)
5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...
- 【bzoj5157】[Tjoi2014]上升子序列 树状数组
题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...
- BZOJ5157 & 洛谷3970:[TJOI2014]上升子序列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5157 https://www.luogu.org/problemnew/show/P3970 给定 ...
- [TJOI2014] 上升子序列
刚刚做的时候一看:这不是个傻逼题吗hhhhh....然后发现写完了过不了样例,仔细一看题:同构的算一种. 这可咋办啊? 其实很简单,设f[i] 为 以a[i] 结尾的上升子序列个数,我们考虑当前如果算 ...
- P3970 [TJOI2014]上升子序列
传送门 DP 十分显然的DP,但是不好写 设 f[ i ] 表示以第 i 个数作结尾时的方案数,原序列为 a 如果不考虑相同的序列: 那么转移就是 Σ f[ j ] (0< j < i & ...
- BZOJ5157 [Tjoi2014]上升子序列 【树状数组】
题目链接 BZOJ5157 题解 我们只需计算每个位置为开头产生的贡献大小,就相当于之后每个大于当前位置的位置产生的贡献 + 1之和 离散化后用树状数组维护即可 要注意去重,后面计算的包含之前的,记录 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
随机推荐
- yum -y update 报错:GPG key retrieval failed: [Errno 14] Could not open/read file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-5
用的是centos6.5的镜像,yum源太老了,修改了之后想更新一下: yum -y update 执行报错: warning: rpmts_HdrFromFdno: Header V3 RSA/SH ...
- Shiro - 与Spring集成
本文是针对web应用web.xml: <filter> <filter-name>shiroFilter</filter-name> <filter-clas ...
- Spring学习笔记:Spring动态组装打印机
一.如何开发一个打印机 1.可灵活配置使用彩色魔盒或灰色魔盒 2.可灵活配置打印页面的大小 二.打印机功能的实现依赖于魔盒和纸张 三.步骤: 1.定义墨盒和纸张的接口标准 package cn.pri ...
- springboot项目作为war包运行
一.首先是pom文件中设置打成war包 < packaging>war< /packaging> 二.然后是修改依赖: <dependency> <group ...
- springboot自定义异常
SpringBoot自定义异常以及异常处理 在web项目中,我们可能需要给前端返回不同的提示码.例如:401表示没有权限,500代表位置异常,200代表请求成功等.但是这些提示码远远不能满足我们返回给 ...
- 九 ServerSocketChannel
ServerSocketChannel是一个可以监听进来的TCP连接的通道,就像标准IO的ServerSocket一样.ServerSocketChannel类在java.nio.channels包中 ...
- 基于easyUI实现权限管理系统(三)——角色管理
此文章是基于 EasyUI+Knockout实现经典表单的查看.编辑 一. 相关文件介绍 1. role.jsp:角色管理界面 <!DOCTYPE html PUBLIC "-//W3 ...
- PHP DES解密 对应Java SHA1PRNG方式加密
背景及问题 背景:在和外部系统通过HTTP方式跳转时, 为保障传输参数安全性, 采用AES 加密参数. 关于对称加密中 AES, DES, CBC, ECB, PKCS5Padding 概念可参考ht ...
- Python代码 变量None的使用
代码中经常会有变量是否为None的判断,有三种主要的写法: 第一种是'if x is None': 第二种是 'if not x:': 第三种是'if not x is None'(这句这样理解更清晰 ...
- CentOS 7运维管理笔记(5)----源代码安装Apache 2.4,搭建LAMP服务器
########################## 2016-07-07-Thu--20:34 补充 ##################### 编译安装OpenSSL笔记: 如果系统要使用 ...