bzoj1025: [SCOI2009]游戏(DP)
题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数。
看见这种一脸懵逼的题第一要务当然是简化题意。。。我们可以发现,序列回到原状的次数就是每个循环的规模(即在循环中的数字个数)的lcm,而且因为有n个数,显然所有循环的规模之和就是n,那么问题就被简化成了a1+a2+a3+...+ak=n,求lcm(a1,a2,a3,...,an)的个数。
现在题意已经清楚多了,那咋写呢QAQ
我们把一个数分解质因数,p为质数,那么A=p1^m1*p2^m2*p3^m3*...*ph^mh,我们令a1=p1^m1,a2=p2^m2,...,ah=ph^mh,易证a1+a2+a3+...+ah<=n(分<和=两种情况讨论),则A为一个可行解。
于是问题又变成了求有多少种a1+a2+a3+...+ah<=n。
即有多少种(m1,m2,m3,...,mh)使p1^m1+p2^m2+p3^m3+...+ph^mh<=n。
令f[i][j]为前i个质数,p1^m1+p2^m2+p3^m3+...+pi^mi和为j的方案数,则有:
f[i][j]=f[i-1][j]【这个质数不用】+sigma(f[i-1][j-p[i]^k])【j-p[i]^k>=0】
tot为n以内的质数个数,则答案为sigma(f[tot][i])【0<=i<=n】
代码如下:
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
ll f[][],ans;
int n,p[],tot;
bool v[];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
if(!v[i])
{
p[++tot]=i;
for(int j=;j*i<=n;j++)v[i*j]=true;
}
f[][]=;
for(int i=;i<=tot;i++)
for(int j=;j<=n;j++)
{
f[i][j]=f[i-][j];
for(int k=,sum=;j-sum*p[i]>=;k++)
{
sum*=p[i];
f[i][j]+=f[i-][j-sum];
}
}
for(int i=;i<=n;i++)
ans+=f[tot][i];
printf("%lld\n",ans);
}
bzoj1025: [SCOI2009]游戏(DP)的更多相关文章
- [BZOJ1025][SCOI2009]游戏 DP+置换群
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
- BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】
题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...
- 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)
传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...
- bzoj1025 [SCOI2009]游戏——因数DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...
- [BZOJ1025] [SCOI2009]游戏 解题报告
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- BZOJ1025: [SCOI2009]游戏
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- bzoj1025: [SCOI2009] 游戏 6
DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...
- [bzoj1025][SCOI2009]游戏 (分组背包)
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...
随机推荐
- MySQL☞lower函数
lower(列名/字符串):将大写字母改成小写字母 格式: select lower(列名/字符串) from 表名 如下图:
- 关于maven项目中修改的JS不生效的解决方案
1. 问题描述 昨天下午博主在开发学习的过程中,碰到一个修改了JS无法生效的问题,折腾我不少的时间,现将百度到的解决方案总结一下,以便下次碰到类似问题能够最快的找到解决方案 2 解决方案 2.1 方案 ...
- 【MFC】VS2017新建完MFC后,没有界面,只有代码
问题描述:双击.rc文件后提示在另一个编辑器中打开 解决方法整合: 1----- 打开工程之前先把.rc文件改个名称,然后打开工程双击解决方案管理器的.rc文件, 会显示"载入失败" ...
- 1053 Path of Equal Weight (30 分)(树的遍历)
题目大意:给出树的结构和权值,找从根结点到叶子结点的路径上的权值相加之和等于给定目标数的路径,并且从大到小输出路径 #include<bits/stdc++.h> using namesp ...
- 2.azkaban3.0安装
安装规划安装azkban1.安装配置数据库2.下载安装web server3.安装mulit executor4.安装azkaban插件AZKABAN参数安装出现的问题 安装规划 IP 角色 端口 1 ...
- Switches and Lamps(思维)
You are given n switches and m lamps. The i-th switch turns on some subset of the lamps. This inform ...
- CWnd类虚函数的调用时机、缺省实现
MFC(VC6.0)的CWnd及其子类中,有如下三个函数: class CWnd : public CCmdTarget{ public: virtual BOOL PreCrea ...
- <Effective C++>读书摘要--Ctors、Dtors and Assignment Operators<一>
<Item 5> Know what functions C++ silently writes and calls 1.If you don't declare them yoursel ...
- win10 64位系统中安装多个jdk版本的切换问题
前言: 近期要更换oracle jdk到zulu jdk,因此在本地先安装一版zulu的来进行代码的编译和比较. 注释: 本地电脑之前是oracle jdk 1.8,要更换为zulu jdk 1.8. ...
- SQLite - Python
SQLite - Python 安装 SQLite3 可使用 sqlite3 模块与 Python 进行集成.sqlite3 模块是由 Gerhard Haring 编写的.它提供了一个与 PEP 2 ...